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ABSTRACT

The unprecedented requirements for rapid retargeting and precision
pointing for spaced-based directed energy weapon platforms is the
prime driver behind the reported modeling and control study. The
combination of such requirements demand a comprehensive dynamic
model of the nonlinear multibody dynamics of typical space
platforms for such weapon including the interaction with the
platform structural flexure effecting principal weapon system
effective Line-Of-Siqvt 4  This report describes the first year
effort of a three.,year, project which focuses on: (1) the
development of cor'rehensive; generic nonlinear dynamical models
for typical space-based plat forms, (2) the development of high
performance, nonlinear control laws for rapid slewing and precesion
pointing of primary weapon system payload apertures, and (3) tne
design of a series of laboratory experiments to verify and test
the control laws developed. The validation of the analytical
models and the required control theory for the resulting class of
ncnlinear system is described in this report. Simulation results
are given for a simplified benchmark model of a space-based laser
slewing control and consideration for compensation for structural
flexure effecting optical LOS using optical steering mirrors is
discussed. . :,
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This report contains details of the first year of a three year research study on nonlinear mod-

eling and control of flexible space structures with application to rapid slewing and precision

pointing of space-based directed energy weapons. The project is funded by SDIO/IST and

managed by AFOSR/SDIO (AFSC). Results reported herein are for the period 1 Sept. 1987

- 31 Aug. 1988.
The project is managed by Ltn. Col. James M. Crowley/AFOSR/NM and Dr. AnthonyI Amos/AFOSR/NA. We wish to thank both of these individuals for their insight and direction

on this project.
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1 Research Objectives and Project Summary

The primary research objectives of the first year effort in nonlinear modeling and control of
flexible space structures has been in two areas. First, we have considered nonlinear modeling
of a generic class of multibody systems with elastic interactions with primary focus on a
generic model for structural interactions effecting laser system line-of-sight (LOS) pointing
for a Space-Based Laser (SBL) weapon. Second, we have developed practical extensions and
applications of the theory of nonlinear control system synthesis based on the ideal of effective
global linearization by feedback transformation. Our approach to nonlinear control has been
based on the ideal of Partial Feedback Linearization (PFL) with respect to a principal system
output representing optical system pointing.

During the performance period 1 September, 1987 - 31 August, 1988 we performed an
extensive literature survey of available dynamic models and control system issues relating
to primary system performance for a space-based Directed Energy Weapon (DEW). Critical
requirements for precision line-of-sight (LOS) pointing and tracking together with require-
ments for rapid slewing of spacecraft primary body together with possible articulated weapon
syste n aperture have been isolated as important control problems relating to system perfor-
mance (see Figure 1.1). Additionally, beam quality and jitter is related to probably of kill
and is largely effected by controlling alignment of elements within the beam expander. Our
efforts have focused on developing a generic collection of models for SBL type systems in-

cluding provisions for: 1) a primary body with attitude control components including either
reaction wheels or control moment gyros and reaction jets, 2) a secondary body representing
the beam expander base structure, and 3) a continuum beam representing structural support
for the secondary mirror of the beam expander. The modeling approach is readily adaptable
to the generic problem of rapid slewing and precision pointing of a multibody system subject
to elastic deformation. We have developed a series of generic models of increasing complexity
to study the critical nonlinear dynamics effecting LOS pointing and optical system alignment
for a benchmark SBL system. A computer simulation was developed and preliminary system
tradeoffs are detailed in this report.

In the area of nonlinear control design for rapid slewing and precision pointing we have

demonstrated the potential for decoupling control synthesis wherein the flexible dynamics of
the weapon system secondary mirror support structure can be decoupled from the effective
weapon system LOS by the introduction of nonlinear feedback. The generic class of such
transformations obtained for the SBL slewing models we have investigated have a special
structure which permits the decoupling/linearizing transformation to be implemented sim-
ply by using multiple actuators. One way in which this may be used to advantage is in
the integration of continuous mode (e.g. reaction wheels, CMG's, etc.) and discontinuous
(on/off) actuation (e.g. jets). In particular, continuous actuation can be used to effect the
exact linearizing transformation and decoupling of the structural flexure from the LOS while
reaction jets can be used for large angle slewing control. This has significant advantages for
rapid slewing.

We have also identified the potential for the application of low cost accelerometers as the
primary sensors for implementing the feedback linearizing control laws. The primary benefits
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I Figure 1.1: Generic Space-Based Laser System with Multiple Control Systems

which may accrue from the use of a relatively large number of accelerometers mounted on

certain critical structural components are 1) a reduction in the sensitivity of the decoupling
control to detailed knowledge of the elastic stiffness and damping properties of the structure

and 2) simplified computational requirements for on-line implementation of the nonlinear
decoupling control.

A critical observation in our studies of control architectures for SBL systems is the inte-
gration of a variety of actuators for spacecraft attitude control (e.g. thruster jets, momentum
wheels, CMG's, etc.), multibody articulation, optical system components (e.g. steering and

deformable focusing mirrors), and structural vibration control (e.g. proof mass devices,

embedded piezoelectrics, etc.) to achieve principal system performance objectives. In this
report we give sereral examples including simulation results demonstrating options for the

integration of various actuators to achieve optical system LOS decoupling from structural

deformation using optical components.
A critical feature of the control integration problem for rapid slewing is the relative levels

of control authority and control bandwidth achievable from the above spectrum of actuator
technologies. The system requirements study [Gea88] presents a comprehensive assessment of
engineering design requirements for control of SBL type systems and motivates requirements

for I) torque shaping for deformation control, and 2) actuator sizing for slewing control. In
a series of papers and a technical report which we have included as an appendix, Prof.

Dwyer describes a design approach for deformation shaping of torques required for feedback
linearization. In the second year effort we will study the application of these methods for

implementing rapid slewing with available torque actuators.

I
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2 Status of the Research Effort: Initial Conclusions

The performance requirements of space-based directed energy weapons as well as other large
aperture optical systems will place unprecedented demands on the control precision for such
critical mission objectives as optical systems pointing and tracking and retargeting maneu-
vers. System requirements for rapid retargeting typically involve large angle slewing maneu-

vers involving the spacecraft bus together with large optical system structures which may or
may not be articulated as part of slewing. Such maneuvers will involve nonlinear kinematics
and gyroscopic coupling, which is further complicated by coupling with the deformation of
the optical train support structure.

Our objective is to demonstrate the feasibility and benefits of advanced nonlinear control

design methods for rapid slewing and precision pointing of spaced-based platforms subject
to structural flexure effecting primary system LOS and focusing. Our primary focus comes
from requirements for rapid retargeting of space based laser systems. To be meaningful, such
an analysis must be based on models of realistic scale. At the same time, the precise config-
uration of potential systems is not yet known. Since various system configurations including
space and laboratory experimental systems are anticipated the focus of our FY88 effort was
on modeling a generic class of multibody systems with elastic structural interactions which
can be used to study qualitative nonlinear behavior of such systems.

In this report we describe a framework for the systematic modeling of multibody flexible

structures. It should be noted that multibody dynamics, including modeling, is an area
of intense current research. The approach described here is focused to address the issues
relevant to control system design. Among these are three general considerations:

* Different views of the same system are appropriate at different stages of design.

e Models must provide insights into the system qualitative behavior and must also pro-
vide useful vehicles for computation.

* The models must interface easily to standard structural design and analysis tools for
ease of data transfer.

The primary goal of the modeling effort is to provide a basis for design and analysis of
control systems for rapid slewing, precision pointing, and structural vibration control. In the
first year effort we have focused on nonlinear methods for the first two control system design
requirements. Our methods are based on a blend of state-of-the-art methods for nonlinear
control system design based on modern methods of differential geometry and Exact Feedback
Linearization (EFL) and well proven methods of linear system control system synthesis and
design based on frequency response n. thods. The balance of considerations for state-space
or internal dynamical modeling and input-output or transfer function models has proven

increasingly important in providing a quantifiable basis for robust control system design for
linear systems. The methods of nonlinear EFL, however, are primarily based on state space

models. In this report we indicate how the input-output characterization of an important

class of nonlinear systems can play an important role in control system design for rapid
slewing.
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The primary goal of this project for the next year is the design of a series of laboratory
experiments to demonstrate the viability of the nonlinear control methods described in this
report. One central issue in practical applications and laboratory experiments is the extent
to which modeling assumptions can effect results. This report describes the basis for the
nonlinear control methods of EFL and shows that in principal they are based on "exact
cancelation" of certain critical nonlinear terms. Thus we have included a survey of methods
for robust nonlinear control system design for a variety of methods related to EFL in Sec-
tion 7. In the Research Progress and Forecast Report [BBK88] we discussed the relationship
between nonlinear control based on EFL and control systems using the idea of a "sliding

mode" (sometimes called Variable Structure Control). These methods implement a high gain
control which can be inherently robust under certain conditions by utilizing discontinuous
(switching) controllers. We believe the integration of discontinuous and continuous mode

control actuation is an important-indeed essential-feature of rapid slewing control.

I 3 Evolution Equations of Lagrangian Dynamics

The formalism of Lagrangian dynamics begins with the identification of the configuration
space, i.e. the generalized coordinates, associated with the dynamical system of interest.
Once the configuration manifold, Al, is specified we have the natural definition of velocity
at a point q E Al as an vector, q, in the tangent space to Al at q, often denoted TM. We
then define the state space as the union of all points q G M along with their tangent spaces,
the so-called tangent bundle (c.f. [AM78, Arn78J) TM. The evolution of the system in

the state space is characterized using Hamilton's principle of least action by the definition
of a Lagrangian L(q, q) : M x T9 A - R. Hamilton's principle says that the motion of a
dynamical system between times ti and t 2 is a "natural" motion if and only if

bj L dt = 0, (3.1)

or-accounting for the presence of external generalized forces, Q-in its generalized form;

fI2(6L + QT6q) dt= 0. (3.2)

For distributed parameter systems (DPS), special care is required to properly characterize
the configuration space for modeling the system motions. The principal reasons for this
fact follow from the application of the models obtained; viz., the study of time evolutions
sul)ject to control forces. First, control systems will inevitably involve the implementation
of feedback and we are therefore immediately concerned with stability. An appropriate

notion of stability is central to the design of feedback control systems. For Lagrangian
systems the natural definition of stability is implicit in the structure of the state space
which for DPS is a function space and care must be exercised that the construction (and
assumptions) of the state space are consistent with the engineering control problem. Second,

it is often necessary to define finite dimensional approximations to DPS for a variety of

reasons including computer simulation. Again, our primary concern is in approximating theI



SEI-88-10-15-WB 3

time evolution under the influence of control. As we will make clear in the following section,
the formulation of such models in a consistent way is inherently bound to the definition of
the configuration space. In this section we confine our discussion to the configuration space
for continuous systems with one spatial dimension.

The generalized coordinates are chosen so that all "nonworking" or geometric constraints
on the motion are eliminated. This is the key to the utility of the Lagrange formalism
for constructing the equations of motion. In the case of DPS any "geometric" boundary
conditions (which we will denote 9) are therefore included as part of the definition of the
configuration space. All other boundary conditions necessary to complete the Euler-Lagrange
equations result from the application of Hamilton's Principle, (3.1) or (3.2). These are the
"natural" boundary conditions (denoted A/).

An essential part of the definition of the configuration space in the infinite dimensional
case is the specification of the norm. Although all norms are equivalent in finite dimensions,
this is certainly not the case in infinite dimensions. We briefly summarize the main issues.

Consider functions v(z) defined on the domain z G [0, 1] and let D'v(z) denote the r"h

derivative with respect to z. We denote by HP the completion of the set of the set of
functions with p continuous derivatives and which satisfy

111711 1= {ID m,(Z)I 2 + ... + Iv(z)12}d= < oo (3.3)

UThese are the Sobolev spaces [Lio71]. Equivalently, HP consists of those functions whose first
p derivatives belong to the Hilbert space of square integrable functions. Note that x E H'

implies x E H'-' for i = 1,2,..
Let HP denote the completion of the set of functions satisfying (3.3) as well as a pre-

scribed set of boundary conditions designated g. It is not necessarily true that all of the
functions in this new space satisfy the boundary conditions. The reason for this is that an
arbitrary sequence of functions, all satisfying the given boundary conditions, may converge
to a function which does not satisfy the boundary conditions. However, the following propo-
sition is true. Suppose the boundary conditions g involve derivatives of order s and none
higher. Then all of the functions in HP satisfy the boundary conditions provided p > s.
Thus, a consistent definition of the configuration space is obtained if the specified norm is
cormpatihir wtith the geometric boundary conditions.

Hamilton's principle may be used to derive the Euler-Lagrange equations and the natural
boundary conditions. The Euler-Lagrange equations are to be solved along with boundary
conditions 3 = 9 U M. In general, the Lagrangian will involve derivatives with respect to z
of order p and the Euler-Lagrarge equations will involve derivatives of order 2p. In finding
solutions q(t) we seek "weak" (sometimes called generalized or distributionali) solutions in
H, which satisfy Hamilton's principle or "strong" (pointwise, genuine or classical) solutions
in H2P which satisfy the Euler-Lagrange equations. The results are equivalent (in H') when
both problems have solutions. The Euler-Lagrange equations may be given the interpretation
of an evolution equation as we sill describe below.

'There are several approaches to developing the notion weak and strong solutions and many good rea.sons
for doing so. Thus, the proliferation of terminology carries with it sometimes subtle distinctions (c.f. (SF73,
RM57, Sta79]).
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f(t)

Figure 3.1: Simple Cantilevered Beam

Finite Dimensional Approximation and Computer Simulation Finite dimensional
approximations to the system dynamics may be obtained by seeking an approximate solu-
tion to the Euler-Lagrange equations or to Hamilton's principle directly. The latter has the
advantage that, solutions are to be sought in a larger space of admissible functions which pro-
vides a wider choice of approximating functions. Perhaps unexpectedly, this turns out to be
of fundamental significance in developing numerical solutions to the required evolution dy-
namics and for computer simulation. Furthermore, important links to the system physics are
retained through this modeling process. These observations appear consistent with many
standard engineering methods which introduce approximations to continuous, distributed
system dynamics by discretization of the variational problem underlying the Lagrangian

dyanmics [Mei67]. Indeed, this is the basis for the Finite Element Method (FEM) for evolu-
tion dynamics described in [SF73]. The simulation models developed in this study are based
on finite dimensional approximation using collocation by splines [Aga84, Sta79, Pre75]. Fur-

ther details of the method will be given in a later section with examples.
Next we consider some simple continuous systems arising in structural mechanics which

will illustrate the evolution modeling setup described above.

3.1 Example: Simple Cantilevered Beam

Consider the cantilevered beam undergoing small transverse motions confined to the plane.
The beam is excited by a concentrated force, f(t), and moment, m(t), applied at the point
Z- a E (0, 1).

Timnoslienko Model. Each cross section undergoes a displacement. 77(z,t) and a rotationI (z, t). These are the generalized coordinates. The geometric boundary conditions are

g: 77(0,1)=0 and 0(0,1)=0.

Thus, the appropriate configuration space is H '.The Lagrangian is

L j I ,pA ( ±pi ( - [E ( ) + CA L )] dzI2
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and the virtual work 65, = QT6q due to the external forces is

6W= jf(t)b(z - a)677 + m(t)6(z -- a)b~}dz,

where p is the mass density, A, the cross section area, I, the moment of inertia, E, the

modulus of elasticity, and KG, the effective shear modulus. Upon application of Hamilton's
principle, we obtain the partial differential equations

p..4- - O: GA - + f (t)(z -a),

pI _+[EI( ) + KGA -) +m(t)6(z - a),

and the natural boundary conditions

V : K GA (are, - t) -) 0 and El ((t)) 0.

I Thus, we have the evolution equation

0pI .GA EIAKGA ( M( )

where we interpret [17(., t), (.,t)]T as an element in H2.

Bernoulli-Euler Model. Suppose that we consider the same situation with the additional

Bernoulli-Euler assumptions [BK89]. These are

1. rotational inertia is negligible, pI -- 0,

3 2. shear deformation is negligible, i, - - 0.

The deformed beam configuration is completely specified by 77(z, t). The geometric boundary
Iconditions are __

c o 71(0, 1) = 0 and a77(0, 1) - 0.(9z

Notice that the appropriate configuration space is H'. The simplified Lagrangian is

LI L1jaA( 2 _)E ('92 )]dz

and the virtual work expression also simplifies to

61 f m)(z-a)bi m(t)6(-a)6(a)}dz

j fft)(z - a) ± m(t)6b- 1(z - a)} 6r qz (3.4)
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The evolution equation is

pAj + 9 EI- 2  = f(t)6(z - a) + m(t)<-(z - a),

which is to be interpreted on H3 with
,, ,.,,3s(,t) -, an EI 8 ~r((,t)

: 9l 3  -0 and E92 Y 0 .

4 Generic Models for Multibody Flexible Spacecraft

In this section we describe the basis for the formal development of a class of evolution mod-
els for multibody systems with elastic interactions. We follow the approach suggested by

Baillieul and Levi [BL87]. As will be seen, the formulation captures the essential evolution
dynamical structure of the system without requiring detailed knowledge of its internal con-
figuration. As such this framework provides a consistent modeling approach for developing
a hierarchy of models with increasing internal complexity and fine structure. The main idea

is to isolate a "primary body" and to attach a reference frame to it at a convenient loca-
tion for measuring attitude and displacement dynamics. The motion of all other spacecraft

components will then be measured relative to this frame.
Throughout this report we will use the notational conventions given in Table 4.1. Con-

sider a reference frame fixed in the primary body, with origin located by the position vectorIR qR' and angular orientation denoted by L G SO(3), both relative to a fixed inertial frame
(see Figure 4.1). L can be parameterized by the Euler angles' ,, 0, 0 representing sequential

rotations about the axes 3,2,1, respectively:

cos 0 cos ', cos 0 sin 0 - sin 1
L snsin 9 cosV, - cos sine, sinkisin sin, + coskcos , sin coso . (4.1)

cos 0 sin 0 cos V, + sin 0 sin , cos 0 sin O sin - sin cos ' cos , cos J
A fundamental kinematic relationship is

L(t) = -Q(t)L(t) (4.2)

Iwhere 0 - L03 2 "

f W)3 0 -wI (4.3)
U)t.2  LU,, 0

and w = (W 1 ,W 2 ,W3 )T is the primary body (inertial) angular velocity as measured in the

body coordinates.

:se 15e the so-called NASA standard or 321 convention (GoI821.
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I

y,0I
I

X,

I z,

Figure 4.1: Standard Coordinate Frame for I'lodeling

I

Notation Explanation
Xi 1 1,2,... element of a vector x
X T transpose of vector x

x t time differentiation
z(t z)= 0(zt) partial differentiation(. natural (Hilbert space) inner product

natural (Hilbert space) normIx differential variation
X x y vector cross product of x and y

I Table 4.1: Standard Notation for Lagrangian Mechanics
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Define R3 as , (,,9, )T. Then an equivalent relation3 is

1 0 -sin 0
* =F( )w, r- ()= 0 cos V, cos 0sin (4.4)

0 - sin S, cos 0cos,

The body frame position and orientation can be characterized as a point in the special
Euclidian group, SE(3, 3), each element of which can be represented by a matrix

X L R (4.5)

The positions of all other elements of the system are measured relative to the primary body

frame. We identify each particle (or element), P, by its "undeformed" position, z, in the
primary body frame. Let u(z, t) denote the deformed position of P. Furthermore, we fix
a coordinate system in each particle with origin at u(z, t) and aligned-in the undeformed
state-with the body axis coordinates. Let e(z, t) E SO(3) denote the orientation of P in the
deformed state as measured in the primary body coordinates. Note that in the undeformed
state

undeformed 0 1 0 (4.6)
0 0 1

and for small relative motions4

(small - ' 1 (4.7)Ig IF

The inertial coordinates U(z,t) of a particle P can be obtained from the body coordinates
u(z,t) via the relation

U(z,t) = LTu(z,t) + R. (4.8)

x(t) = LT (t)Q(t) R(t) 
(4.9)

Also. a direct computation yields
d- LT (t)[qu + u] + R(t) (4.10)

3 Equation (4.4) is essential to the analytic framework for multibody modeling. Alternate parametrizations

of 50(3)-such as the Cayley-Rodrigues parameters [Dwy84]-can be used to advantage and the general
forim remains intact.

4 This is a standard assumption in modeling small elastic deformation. A considerably different class
of models is obtained using exact (i.e. "geometric") deformation model as in [Pos88]. Since our primary
concern in this study is to develop a class of models applicable for flexure modeling affecting precision optical
systems we retain the small deformation assumption thtoughout.
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The kinetic energy of the system can be written in terms of the generalized coordinates
q = R, u) in the form

T(q, 4*) - Jf 'III2dm f J1Lr[Qu ± Ut]+ RII2dm

- 1 s fQu + u]JiI2 + 2(f2u + ut, LR) + (4.11)

where S denotes that the integral is to be taken over the entire system.

4.1 Lagrange's Equations

In addition to the kinetic energy, T (q,4), we assume that a potential energy function V(q)
is also available. Then Lagrange's equations take the form

d 9T OT DVdt 9 o( + O -

d OT DT D9V
+ O QR, (4.12)

dta D9 R RR
d 6T 6T 6V .
dt 6 1 i t u

where the generalized forces are defined in terms of the tirtual work expression;I 6W Q~d + QdR + Qrbu. (4.13)

Now, we define the system angular momentum with respect to the origin of the body frame

I H =s x [(wx iu+u,)+LRdm= a jsu x LRdm. (4.14)

With some calculation s these equations reduce to

System Angular Momentum

+ X a] + (zt) x< L dm = Q V (4.15)rr( )[+'×a]+fs"'t Ld =Q 0'

System Linear Momentum

f L d (Ut i t) + Rdm = QR R' (4.16)

utt +w x (w x u) +±; x u + 2w × ut + LR Q,, --- (4.17)

IEquivalently we obtain

FT()[I',+±vx Iw+mcxLR+T()D ix[,×U +utid + xL[Rdm = - (4.18)

"Appendix A contains soine identities useful for these calculations.
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T [W X (WXCV U'1
mr7 7 nL[w x ( xc) + x c] + LT[Du + L]dm QR - - (4.19)

D2 i + LR - (4.20)

where the operator D is defined by

dtD(.) := (.) + x .

Note that, in applications, the integrals in (4.15)-(4.17) or (4.18)-(4.17) would not be
,valuated directly. Instead, they are to be replaced by momentum expressions in terms of
an appropriate choice of generalized coordinates.

4.2 Generic Models for Slewing and Pointing of Precision Optical Structures

In this section we develop several benchmark generic models for rapid slewing and precision
p)ointing of flexible space structures which are motivated by problems relating to control
of precision optical structures subject to elastic interactions. Such problems arise in re-
quirelients for rapid retargeting coupled with precision pointing for space-based laser (SBL)
systenms. The models reflect generic qualitative dynamical properties of such systems. In a
subsequent section we develop a simulation model with physical parameters obtained from
the benchmark SBL structural model developed in [Lea87].

The models developed in this section focus on primary sources of structural interaction
with principal body slewing maneuvers affecting system LOS pointing. Modeling assump-
tions used to characterize generic responses are based on the initial system level tradeoffs
described in the R & D Associates report [Lea87]. This study indicates that the principal

source of structural flexure affecting laser LOS is within the beam expanded optical train-
the principal structural component being the metering truss supporting the relative position
and orientation of the primary and secondary mirrors. Our initial or first-level model assumes
the beam expander primary mirror and support is rigidly attached to the spacecraft body
and only the metering truss is subject to flexure. In the second model we include provisions
for articulation of the SBL beam expander with respect to the SBL system spacecraft body
using a gimbaled joint.

4.2.1 Example: Rigid Body With 1-Dimensional Appendage

We consider a single rigid body attached to a flexible appendage as illustrated in Figure 4.2.
The system kinetic energy can be expressed as

/f If~ir ,f 2 + L( , .R' +"lR" 2 1t-
T = f(Qu. / + 1 11 m (4.21)

J2b f Qu + "'11 + 2(Q,, + tit, Li?) + IIRII2din.

2 Wbb. - nbc bLR + imblIRii

+ I J {llbq + ,it1 + 2('Qb, + it, LR) + 11R11 2}pA dz
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+ f {[b + tJTI[W6 + tljp dz

where c E W' is the location of the rigid body center of mass in the body frame, mb is the
mass of the rigid body, Ib is the inertia tensor of the rigid body in the body frame, and
p is the mass density of the beam, r(z,t) is the position vector of points on the deformed

centerline of the beam in the primary body coordinate frame and (z, t) (V', 0 O)T(z t) is
the beam angular deformation. We have assumed small deformation of the beam so that the
angular velocity of the beam section at z is

w(z, t) = wb + ±(z, t)

up to first order in the angular deformation.
The potential energy of the system consists only of the potential energy associated with

deformation of the beam. Under Timoshenko beam assumptions [CKEFKP68] the potential
energy function is

7)= , f ,J(¢) + EI2(0)2 + E13 (1x)2

+ K iGA(ql,= - 0)2 + KGA(r2 , - 0)2 + pEA(773,z - 1)2} dz (4.22)

f' f {(FiK~z) + (71 p)(1 - -) d

where the stiffness matrices are defined as

K = diag(GJ, E12, EI3), S = diag(K1GA, K,,GA, tEA),

and
[0 1 0]

The system angular momentum vector is

a IbWb + f [At7x (wb x 71 + 77) + IwJp dz

so that equations (4.15)-(4.17) reduce to

ff()(b bU)± Wb X IbWb)

± / [FT( ~)Aql x (77, ± Uwb X (wb X 77) + Wb x t77 + 2wb x7*

± Ar x LR + I(L + Wb x w)Jp dz + mc x LR= R" ,, (4.23)

mR + mLT(W x (; x c) + . x c) + j p4(LTD2 + R)dz = QR, (4.24)

pA(tt + wb x (wb x 17) + ;b x 7 + 2wb x 7- + Lji) = Q, - S(r/z= - Pc:), (4.25)

PI[6t + Wb + Wb X (wb + t)) = Q : - Kz: + pTS(r. - P). (4.26)
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System Dissipation A simple model of generalized dissipation in the appendage can be
obtained by introducing a Rayleigh dissipation function. We formulate such a function based
on the assumption that dissipation forces are proportional to beam deformation rates, i.e.
generalized coordinate velocities (yt and t) and strain rates ((r71)tz - Ot, (rz)tz - t It6).

R(qt, t) = j {2T1li7 t + t + (2ltj)T z3 t: + (6z)T 4( t)}dz (4.27)

where Ei = diag(Ci,, (,2, (i3). From R(77t,.t) we obtain the generalized dissipative forces

6R - 7t ± - 3 (l7tzz - P 6), (4.28)

67t
6R - 2 + -3( 77t - P 6 ) + - 4& zz . (4 .29 )
6t

4.3 Example: Articulated Bodies With Flexible Appendage

Ve now consider a modification of the previous Example which includes a second body
attached to the primary body with a three axis gimbal as illustrated in Figure 2. In addition,
the second body carries with it a reaction wheel package. The kinetic energy function is

T y TWIPWp _-MPCT QpLR + !mpjIR!12

primary body

+1rI' m 'crf2L 3 {LR + Q2pcg,} + Lm IILR + Qpcg,ll2

second body (wheels locked)

2 3 I3 W3 +13CI-'3

reaction wheels

+ L , t {lJ ,,p7 + i7t11j + 2(Qp?7 + 7n, LR) + IIRI 2'}pA d:

+ ( + JJ )} pdz (4.30)

Note that cp and c, are the locations of the center of gravity of the primary body and
second body (including wheels) in their respective body coordinate frames. The vector cg.
denotes the location of the three axis gimbal in the primary body frame. The matrix 1,
is the primary body inertia tensor in the primary body frame, 1, denotes the second body
inertia tensor with reaction wheels, and 13 is the diagonal matrix of wheel inertias.

4.4 Simulation Example: Slewing in the Plane

(onsider a rigid body with a flexible appendage attached which is restrained to motion in the

' r z plane which means that 0, V, = 0. In addition, we assume that axial beam vibrations
are negligible so that 73 = z, and that the translational velocity, R, is also negligible. A
control torque Tb is applied to the rigid body.I



I

SEI-88-10-15-WB 13

IX
I

Figure 4.2: Rigid Body with Flexible Appendage

beom expander

princip gl
body

~optics

support
atructure

Figure 4.3: Hinged Bodies with Flexible Appendage
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The formulation cf the equations of motion follows the procedure outlined previously.
The system Lagrangian L = T - V can be obtained by reduction of (4.21)-(4.22) under the
above assumptions to the form

L = }Ib+ f [Wb(z - 1) + t]2pA + (wb + Ot)2pI}dz

I- j{EI(9i- ± KG4(1- - 0)2} dz (4.31)

and the virtual work expression is

6W = Tb 606.

Notational conventions for the planar model. In the rest of this section we substitute
the symnbol q for the first component of the lateral deflection 7, in an abuse of notation.
Whereas 0 denotes the rotational deformation of the appendage we denote by 0b (wb) the
primary body attitude angle (resp. angular rate).

Notice that, the configuration space is S' x H1, with generalized coordinates b C- S 1 ,

(q.O) Ha, and the geometric boundary conditions are

: q(O, t)= 0 and 0(0, t)=0.

IThus following the previous approach the evolution equations can be written

IWI'b ± {z(mtt + e'6z + w +)p,4 (,.'b + Ott)pI}dz Tb (4.32)

pA(r7tt ± Wz + wbr) - c1qt - C3(qtz: - Ot:) + cGA4(71 - 9) = 0 (4.33)

pI(sb + Ott) - c20t - C3 (7ltz - Ot) - c40t.. + E16- - KGA(1: - 9) = 0 (4.34)

with natural boundary conditions

A-: 9(e,t)- (et) =0 and 0,(e, t) = 0. (4.35)

34.4.1 Finite Dimensional Model for Planar Slewing

From the discussion in Section 3 we some care must be exercised in introducing finite di-
nensional approximation of the DPS by discretization of the spatial coordinates so that

the resulting finite dimensional evolution model approximates the evolution dynamics of the

continuous One consequence of these remarks is that direct spatial discretization of
the DPS evolution equations (4.32)-(4.3.5) is not recommended. Rather the recommended
approach is to approximate the system Lagrangian (4.31) by FEM and then develop the finite

dimensional evolution model by applying variational arguments to the reduced Lagrangian.
For control system design we are ultimately interested in the stability of certain equilibria

of DPS and the asymptotic convergence rates near these equilibria under the influence of
exogenous (control) forces. For these purpose useful finite dimensional models must. include
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some provisions for modeling system dissipation. Our approach is to introduce an approx-
imate Rayleigh dissipation function defined on a finite dimensional subspace of the state
space for the DPS which approximates a function of the form

R(7~,(1 7' +( &' +2 3(77t - 602 + (40' dz (4.36)

which can be obtained directly from (4.27) under the above assumptions.

4.4.2 Reduced Order Modeling by FEM and B-splines.

Our approach to finite dimensional modeling is based on the use of B-splines and the FEM.
Recall that a B-spline (or basis spline) of order k introduces an approximation to the appro-
priate distributed parameter of the form,

N+k-I
77(z, t) ::- E i(t)B'_k(z) (4.37)

i=0

where N is the number of spline sections (finite elements). The B-splines of increasing order
are defined recursively as

- B' _(z) ±1+z+1- 38)B (Z) Zi+k -- :, + i+k+l - -i+1 1(,) (4.38)

with the order 0 spline defined with continuity from the left;

Bo~z) , if Xi < X < Xi+j 4-9
B°(z~ := 0, else

The 'coefficient' functions i(t) are to be eliminated by application of certain interpolation
conditions at the knots together with the geometric boundary conditions.

Remark: For discretization of the system Lagrangian (4.31) and the Rayleigh dissipation
(4.36) we see that order 1 B-splines (i.e. linear splines) are all that is required. This is not
obvious if one attempts to discretize the DPS model (4.32)-(4.35).

The required interpolation conditions are given at N uniformly spaced knots on the
spatial interval 0 < z < e;

N

77(-L) = E-- ,B _,' (-) (4.40)
i=O N
N

i=0N

N,7(e) E-- ,)B,._I,(e)
i=0
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together with the geometric boundary condition

N

77(0) = i _ iB - (O). (4.41)I i=0

Let. k . = i(kL/N) for k 0,1,..., N, and denote771o

Then we can write the N + 1 interpolation conditions in matrix form as

(4.42)

where

r(9e)

M1= .(4.43)

PT(e)

SB1
1(z)1! ( ) =. (4.44)

Now we use (4.42) to eliminate , from (4.37) to obtain,

~7(Z',t) PT (-)MAf-10 =0 , ;:

SB T (z)AIO(t)(4.45)

Similarly we obtain an approximation to the rotational generalized coordinate as
O(Z't) 3~ ) l)t.(4.46)

In the sequel we use the notation
,b~( T Z) : ( )./ ,(4.47)

a I x N array. We note that the N-vectors and 0 represent the spatial solutions at the knots
and satisfy the interpolation conditions. The spline is continuous up to its first derivatives.

For this simple model the interpolation conditions and geometric boundary conditions

result in a simple relation for the elements of 41 since.i 0IM=[ 'N J,
I 1 N1 0 ... 0
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so that

IN

thus IT(z) [B'(z), Bll(z), ..,B 1 _(z)]. (4.48)

i EnNow using (4.48) together with (4.45) and (4.46) we can approxmate the System Kinetic

Enrgy;

T = Trgid + Tjiex,, (4.49)

Trigid 11 IbW (4.50)
,fe 1- 2 NT _ WTI~ +_ 0"N

27 V' 2NnjNb+bUbNlT 7772±' U) N (4.51)

where

N,7 = j pAI1(Z)4T(z) dz (4.52)

Nh = (z2pA + pI) dz (4.53)

NTr" = = f pAz D(z) d- (4.54)

IV N = f' pp( Z )q(z) dz (4.55)

the System Potential Energy

I 1 OTpo + 19 ± K, i + rTK, o, (4.57)

where

I, = oE z()() + GA(z (z)} dz, (4.59)

K 9e = -{fE GAI2z( z)bT( z) dz, (4.60)

I and System Dissipation Function

R BI + -0 B9t + B,, (4.61)

where

I ,7 = f{ ,iI(z)r(Z) + ( 3 D-(z)T( --)} dz, (4.62)

Be = f{((2 + ( 3)'(z)I T (z) + (4'I(z)k(Z)} dz, (4.63)

B,7e = - fo 3 Z(z)pT(z)dz. (4.64)
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The parameters (1, (2 represent external dissipation (e.g. viscous damping) and (3, 4 model
inttrnal (e.g. material) dissipation [BK89].

Solving the Lagrange's equations in terms of the finite dimensional generalized coordi-
nates;

d OT _ (T - V) OR

dt OCWb 0 b Owb
d OT (T - V) OR

+ -= 0, (4.65)

d OT _(T-V) OR
dt 9fi 90 +90 -O

gives the finite dimensional model evolution equations,

[M, + TNf, + , Nw, 9O Wb7 Nn? = Tb, (4.66)

1VI7 + WN,,1,7 -wN,q + K,7i + K 7o# + B,7 + B,7oO = 0, (4.67)
N9 + WbNwo + K + K ± Bo# + BrT 0, (4.68)

where the effective rigid body inertia for the undeforined elastic appendage state is

AL = Ib + N, .

To compute the coefficients of the resulting reduced order model equations in terms of
the DPS physical model parameters we must evaluate the integrals in (4.52)-(4.56), (4.58)-
(4.60), and (4.62)-(4.64). For initial simulation studies we assume the elastic appendage
is a uniform beam and take pI, pA, EI, KGA constant over z E [0, 1]. Later this will be
modified to model the spatial variation in cross section and moment of inertia associated
with a typical pyramidal shaped secondary mirror support structure for typical laser beam
expander for a space based laser.

Under these assumptions we can obtain an N x N matrix

t f Z( )pT(_z) dz

with elements of the form

[NMa= / Bj1_(z)B'_ (z) dz, for i,j 1= ,.. .,N.

A straightforward computation6 obtains the tridiagonal structure of N with elements,

( -(L), for i=j N
2( j _(L) fo r I=j< N

fNi -j3N(4.69)
1 (L fori= j 1

1 0, else

'7See Appendix B for details.
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Similarly, we obtain the N x N tridiagonal matrices

t
I= fo :(z) r(z)dz' (4.70)

=' 10 (z)DT(z) dz, (4.71)

with elements given by

2(), fori=j<N

[N'j = _( f (4.72)-(--), fori=

0, else

0, fori:=j
, fori=j+I2 fori1--, (4.73)

0 else

With these relations we can express the model coefficient matrices as follows:

IV, = pAN

No = pIN

Ke EIN' + GAN
K70 = -,GA k'

B, ( +N(3 N'
Be = 2 + 3 ) + ( 4 '
B~o -< 3 k'.

Similarly the 1 x N matrices

NI pA zT(z) dz, (4.74)

NI = pI tT(z) d, (4.75)

Ican be reduced to the form

I = pI N , e N N 2(4.76)

[NT 1 pA(1 + i)( for i 1, N - 1

NI,,f7 pA(k)2[X N 1), fori=N

Finally, we obtain by direct integration of (4.53) under the above assumptions that

t3
N, = p.A4- + pie. (4.78)!3
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5 Normal Forms, Decoupling and Partial Linearization

5.1 Partial Linearization and Stabilization of Nonlinear Systems

Techniques for stabilization of nonlinear systems via feedback control are still very limited
and tend to be tailored to specific situations. Among the most promising general approaches
are based on global hnearization by Exact Feedback Linearization (EFL) [HSM83, KC87].

The methods are based on earlier work of Krener [Kre73] and Brockett [Bro78] which demon-
strate that a large class of nonlinear dynamical systems can be exactly (i.e. globally lin-

earized) by a combination of nonlinear transformation of the state coordinates and nonlin-

ear state feedback. More recently the connection between these methods and the idea of
input-output (or partial) feedback linearization (PFL) by construction of a systeim inverse

(HirT91 has been articulated in a series of papers by Byrnes and Isidori [BI85, B184]. These
connections have engendered a series of design methods with representative results for spe-
cific applications by Kravaris and Chung [KC87] and Fernandez and Hetrick [FH87]. In this
section we will summarize these results and then proceed to develop the method for the case

of multibody systems from the perspective of Lagrangian mechanics.
Partial linearization derives directly from the Byrnes-Isidori normal form for nonlinear

systems. The essentials of the approach are most easily developed for single-input, single
output systems and we will present the approach in that context. The theory for extending

these results for multi-input, multi-output problems is now complete and references are
included.

Consider a nonlinear dynamical system in the form,

= fW + g((5.1)

y = h(x) (5.2)

where f, g are smooth C' vector fields on W" and h is a smooth function mapping R" - W.
Now if we differentiate (5.2) we obtain

Y= - fW+ g~ )(.5.3)
ax

In the case that the scalar coefficient of u (viz. 2h g(x)) is zero we can differentiate again until
a nonzero control coefficient appears. The number of required differentiations is fundamental
system invariant which plays a role in constructing system inverse and therefore in partial

linearization. The Byrnes-Isidori analysis shows that this integer number is analogous to the
relatt'e degree for a linear system [BI841.

The above construction can be made precise using the notation of differential geometry

which has found application in analytical mechanics [Arn78]. We will need only the notion

of Lie derivative and Lie bracket. The Lie (directional) derivative of the scalar function h
with respect to the vector field f is

Lf(h) = (dhf) f(x). (5.4)
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Since the above operation results in a scalar function on ", higher order derivatives can be
successively defined

L k(h) =Lf(L'-'(h)) := (dL k-1(h),f) (.5.5)

IThen we can write (5.3) as

y = (dh, f) + (dh, g)(5

= Lf(h) + Lg(h.)u. (5.6)

If Loth) 0 then we differentiate again to obtain

= (dLf(h),f) + (dLf(h),g)u

= L2(h)+ Lg(Lf(h))u. (5.7)

If Lg(L4 '(h)) = 0 for k = 1 ... r- 1, but Lg(Lr- 1 (h)) $ 0 then the process terminates
wit h

dt _ LF(h) + Lg(L -'(h))u. (5.8)dt r  ff

The system (5.8) can be effectively inverted by introducing a feedback transformation of the
forIii

S1 F,- Lr(h)] (5.9)u=Lg(Lr_'(h))'

which results in an effective input-output system fromI v - y given by

dr y
dtr

a linruar system.
The integer r > 0 is called the relative degree of the nonlinear system (5.1)-(5.2). Note

that if we define new state coordinates z E "W as

Zk = Lk- 1 (h), k = 1. r (5.10)

then the nonlinear system (5.8), as obtained from the previous procedure, can be written in
the form

00 1 0 ... 0 0
0 0 1 ... 0 +( . 1- - z+ "(5.11)

" - 0 0 0 ... 1
0 0 0 ... 0 j0

,(x) + p(x).

where

a(x) = L'(h), p(x) = Lg(Lr-1 (h)). (5.12)

More generally, using the new coordinates z (5.10) and introducing a nonlinear feedback
control of the form

(v - (x)) (5.13)
1 -1.3



I

SEI-88-10-15-WB 22

where
,7(X) 3k.L (h L r(h, (5.14)

I k=0

p(x) = L(Lr-l(h)), (5.15)

with 3 for A, = 0. r - 1 real positive coefficients then the equations (5.6)-(5.7) can be
writ ten in "redced" form;

[0 1 ) ... 0 0

0 0 1 • 0 0

3o - 1  3 .  -3-1
y = 1, 0 ....-. O} ,-. (.5.17)

Nonlinear System Transmission Zeros Note that the process leading to (5.16)-(5.17)

provides an equivalent state space realization for the input-output map of McMillan degree
strictlv less than n (the dimension of the original state space model (5.1)-(5.2)) by decoupling

a portion of the system dynamics from the otiput response. This is depicted in Figure 5.1.
Thus the new state coordinates : are a 'partial' state for the system. Thus stabilization of

cannot guarantee stabilization of the full state model (5.1)-(5.2).
Byrnes and Isidori [B1851 describe the above construction leading to a system normal

form in the form (5.16)-(5.17) from which complete stability results can be obtained. The
main result provides the existence of a transformation of coordinates x ( z), with the
state partition in the new coordinates - R". z E R' so that the full state representation
in te new coordinates is in normal form;

(5.18)

= 0 0 z+t (,) + r(,z)] (.5.19)

where 3( .z) = a(x( , z)) and r( , z) p(x( , z)). Thus we can define zero dynamics of the
original system (5.1)-(5.2) as the autonomous system

F(,0). (.5.20)

Partial Linearization for Lagrangian Systems Despite the apparent, simplicity of de-
termining the zero dynamics from the normal form as above it is, however, quite complex to
compute the complete transformation leading to the full state normal form as given above.
One approach (if possible) is to obtain the full state exact linearizing transformation via the
procedure given by Hunt, Su, and Meyer [HSM831 which requires the solution of a set of si-
iuiltaneous partial differential equations. However, in many special cases the zero dynamics

as well as the required transformations for partial linearizing control can be obtained more
directly. In the sequel we discuss the required constructions for Lagrangian systems.
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Consider the case of a square Lagrangian system with inputs r C R' and outputs y E W'.
Suppose that the n generalized coordinates can be partitioned into components q, E N' and
' + iN ". so that the equations of motion take the form

d OL 0 L - r,- (5.21)
dt Oq 1  aq,
d -L a 0, (5.22)d OL aL

dt aq2  q2

y h(ql,q 2). (5.23)

Assumie that, the origin is an equilibrium point with r = 0, h(0, 0) = 0. and that the Jacobian
Oh."0! 1 is nonsingular on some neighborhood of the origin. Furthermore, we assume that
tile Lagrangian is a positive definite quadratic form in the generalized velocities. Then the
iiiplIt-olitput map (7 - y) has relative degree 2 (locally), a PLF control exists and the
zero dynamics may be computed by a relatively simple coordinate transformation applied to
(5.21 )--5.23).

In order to demonstrate these properties we introduce a change of coordinates (ql. q2)
(y, u) via the relationsUy - h(q 1,q2), it - q2. (5.24)

Nnte that the assumption det9h/aq, # 0 at the origin assures that this is a valid local
coordinates transformation and the inverse relations can be given as

q, = g(y, u), q2 = I.. (5.25)

Since any 'point" transformation preserves the Lagrangian structure of the equations, in the
new coordinates we can write the variational problem in the form

daL IY , (5.26)

dt ay 0g

d t a L
-F -, (5.27)dt all alt

wLer (y , Y t, , ,) = L (q l, q'h , q 2, q )1q,= gly, ),q = u (,5 .2 8 )
and

and KIT ag1I T

- ayu al (5.29)

Equations (5.26)-(5.27) reduce to the form
Ji + vii + K(y, it,,,,) F= 17, (5.30)

r T + jiii + (y,u~i) = ar. (5.31)

Let us define the partitioned matrices EY, EE,1 .1 (, D, via the relations
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I and tJ 1  ) (5.33)

I Note the choice of control

r -' + v} (5.34)

reduces (5.30)-(5.31) to

y - t (5.35)I.J(y, ) P + ji(y, u)ii + K(y, ,.,t) FAy,,,)4;'(y, u){7,(y, ,) + v} (5.36)

where we have explicitly displayed the dependence of the model parameters on the generalized
coordinates. Equation (5.35) provides the linearized input-output dynamics and the zero
dynamics are obtained from (5.36) upon setting y(t) = 0, which implies ' = 0, = 0, and
1' 0. Thus, we obtain the zero dynamics in the form

J(0, U)ii + K(0, 0, it, 11) - F(0, 1) I'y(0, U)Vy(0. u) = 0 (5.37)

Uwhich represents an autonomous nonlinear dynamical system in the state coordinates 11, tU..
We say the system is locally minimum phase if the origin in the (u, i.) coordinates is a
stable equilibrium for (5.37). If the system is minimum phase then selecting the control v
to stabilize the origin of (5.35) guarantees stability of the origin of the dynamical system
(5.21)-(5.23). Thus the computational complexity of obtaining the zero dynamics depends
on the complexity of the required inverse relation g in (5.25).

In the next section we indicate the importance of this approach to nonlinear control
vsteni design for rapid reorientation (slewing) of a flexible space structure.

I6 Rapid Slewing Control for Flexible Space Structures

A primary measure of system performance for an SBL weapon system is its retargeting
envelope consisting of achievable changes in LOS angle and required minimum slewing time
for a given maximum torque capability. For system torque sizing a time-optimal control
maneuver is usually assumed. Since the ideal, time-optimal acceleration waveform is a
discontinuous, bang-bang control, achievable performance is typically limited by actuator
slew rate limiting. For precision optical systems, elastic interactions from spacecraft and
optical system support structure may limit achievable slewing times and retargeting angles
well before actuator slew rate limiting becomes a factor. Structural excitation will ultimately
limit, fine pointing precision and optical component alignment, and will increase effective
system slew times.

In this section we describe the application of PFL and decoupling control for rapid
slewing of a flexible space structure. We consider slewing of the system principal LOS while
decoupling the system elastic response. Our benchmark problem--as described in a previous
section-is motivated by the elastic interactions due to structural deformation in a metering
truss of a typical optical beam expander for a SBL system. Initially, we consider LOS defined
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in terms of principal body attitude and consider the limits of achievable performance. Next
we refine the definition of optical LOS to include relative alignment of optical components

subject to structural deformation dynamics. We indicate how to utilize available optical
steering mirror components to compensate for structural interaction contributing to a well

defined system LOS. Simulation results for a simple planar dynamical model are provided
based on the finite element model developed in a previous section and using available system
parameters for a typical SBL benchmark.

6.1 Slewing Control for Principal Body LOS

To illustrate the application of nonlinear PFL we focus on the simple planar model for slewing
developed in section 3.4 and given by equations (4.32)-(4.35). Consider a typical optical train

for a, laser beam expander as shown in Figure 6.1. Various options for a support structure for
the secondary mirror (metering truss) are considered in the system study [Lea87]. Clearly,
flexure response of the metering truss is an issue of dominant concern affecting the optical

system alignment including focusing and LOS pointing. The model equations (4.32)-(4.35)
can be readily adapted to characterize the principal dynamics of this system under the
assumption of planar motion and assuming the metering truss is the primary source of
structural flexure affecting LOS pointing.

Initially, we approximate the elastic deformation of the metering truss using a uniform
beani model and take the structural parameters E, I, p, 4, KG as constant over the length of
the truss 0 < z < (. For our simple planar slewing model we take as a model for the system
effective optical LOS as OLOS, given by

9 Os = Ob + .ALOS (6.1)

where Ob is the principal body attitude in the x x z plane and ALOS is a relative LOS
deflection due to deformation of the metering truss and the resulting dynamic misalignment
of the secondary mirror. For the case of planar motion we can model the relative LOS as a
perturbation of the body LOS resulting from angular deformation at the secondary mirror
of the form,

ALOS = 2{i:(() + 9()}. (6.2)

This simple model is summarized in Figure 6.2.
For simulation purposes we introduced a finite element model for this system in sec-

tion 3.3.1 given by equations (4.66)-(4.68). Our initial considerations for rapid slewing are

focused on attitude reorientation of the spacecraft principal body. Thus we define the system
output as y = Ob.

To obtain the PFL transformation we proceed as for Lagrangian systems. In this case the
reruired change of coordinates is trivial since (4.66)-(4.68) are already in the form (5.30)-
(5.31) with respect to the system output y = 0b and u # ,)T . Thus the linearizing

feedback torque can be given immediately from (5.34).

To illustrate the simplicity of the computations, we identify the model equations (4.66)-
(4.68) in the form

JO(u)b + NTit + KG = Tb (0.3)
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Mii 4- N + K,, = 0 (6.4)

w here j 9 A l" _

[ rN,1  0 1 v NK,,,,1
IV IV .

' 0 V7 J L,

K,9 = 2wb rNTi7.

I(K, b IV,) K,7  [ B,, B,,,

TiJ[ BP Be9

S The FLb torque is
Tb = - MK , (A1 2 h,, - ') (6.5)

* ~ where
M Ill,,11 11 1 [J9 N T -

is the newJ. 1yT1 -

1-l21 Al2 f2[ N Af
and t, is the new, synthetic control input. The nonlinear feedback transformation linearizes
the input-output map from v - y and decouples the v dynamics so that;

| " .

The resulting system is stable if and only if the decoupled, zero dynamics are stable. In
this case, the zero dynamics are readily obtained from (6.3) by letting 0 - 0, 0 0,- 0;

AI, i + K," = 0.

which is the (linear) cantilevered dynamics of the flexible appendage. Clearly, this is (practi-
cally) stable as long as sufficient damping (either active or passive) is present in the structure.

Design of time-optimal slewing of the decoupled, linear, 0b dynamics is now straightfor-

ward and practical implementation is discussed next.

Pseudo-Time Optimal Control of Ideal Rigid Body Inertia. Time-optimal slewing
of a pure inertia subject to limited acceleration consists of a bang-bang acceleration with
constant acceleration up to a switching instant at which time a constant deceleration is
applied. Implementation of time-optimal control for a pure inertia involves determination of
a switching condition for the ideal, bang-bang acceleration (control). For feedback control
we would like to obtain a switching surface in the phase plane (0, 9). The ideal bang-bang
control is discontinuous with respect to this switching surface.

Trajectories in the phase plane of (0,0) for constant acceleration can be obtained from

the flow of

with . a constant. The required switching condition is defined in terms of a switch-
ing surface given by the phase-plane trajectory approaching the origin which satisfies the

condci tion;
2CImiax ± 02 = 0
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with sign depending on the sign of aiax. For cmrax > 0 the required ideal switching surface

is given by
(0, )- 20, .,0 + '9!Ol 0,

and the ideal, time-optimal acceleration is a switching law of the form,

a = -sgn{2ax0O + 0910}.

Practical application of the above control is limited by the requirement for instantaneous

torque (acceleration) switching and by he tendency for a feedback implementation of the
above form to limit cycle in the region near the phase plane origin.

A practical. pseudo-time-optimal control can be implemented using feedback by replacing

the requirement for instantaneous switching with a direct limit on acceleration slewing rate.
This is achieved by replacing the sgn function with a saturation function of the form,

sat(E) = E, 161 -< amax
I ( -Otmaxr, 6 < -Omraa

The pseudo-time-optimal control can then be implemented in the form,

U a = -sat{g 1 (f(u-) + 2amaxO)} (6.6)

where w 9 the nonlinear function f(w) is a piecewise continuous approximation to the
ideal quadratic switching surface

{ 2 +g2/4, w>g2/ 2

f(U) - g2w, Iwl < g2/2
- g; 9/4, Uw < -92/ 2

The constant gain gi is chosen to represent slew rate limiting in the torque actuator and g2
is chosen to provide stable (damped) pointing response.

Given the nonlinear PFL transformation the pseudo-time-optimal control can now be
implemented directly for principal body LOS slewing by setting v = a in (6.5) with a given
in (6.6).

6.2 Simulation Results for Principal Body LOS Slewing

The finite dimensional simulation model for planar slewing is now used to illustrate the be-
havior of the combined nonlinear PFL and pseudo-time-optimal control given by (6.5), (6.6)
and v= a. The FEM model is described in Section 3.4.2 and is based on physical parameters
given in lable 6.1 which are loosely taken from the system study [Lea87]. The elastic and
shear moduli are chosen to roughly approximate the reported first modal frequency of the

metering truss obtained from the structural analysis of the benchmark SBL system [Lea87].
The internal dissipation parameters, ( ((4) were chosen, somewhat arbitrarily, as small frac-
tions (2%) of the elastic (resp. shear) modulus. The external damping coefficients (,,(2
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I Parameter Value Description

Ab 1.325E+06 principal body moment of inertia
e 15. length of appendage
p 1520. mass density of appendage
A 0.01298 cross section area of appendage

E 1.6E+07 appendage elasticity modulus
KG 6.4E+06 appendage shear modulus

I 693.11 appendage area momentI . 4~ 0.0 external dissipation coefficient
1661.44 internal dissipation coefficient

(4 0.222E+09 internal dissipation coefficient

Table 6.1: Physical Parameters for Simulation Model (in MKS units)1

mode [frequency (r/s) mode frequency (r/s)

1 6.8167991 7 64.716684
2 19.996775 8 73.055738

3 20.941475 9 87.662067
4 36.418957 10 91.188281
5 41.217664 11 118.80496
6 54.057492 12 139.11817

Table 6.2: Undamped Frequencies of Cantilevered Appendage Dynamics

I



I
are set to zero to simulate space environment. The resulting undamped frequencies of the

cantilevered appendage dynamics are given in Table 6.2.

The resulting response in principal body LOS 0 b for N = 5 finite elements is shown in

Figure 6.3 for a 30 degree slew. The commanded ideal LOS acceleration a obtained from

(6.6) with 0 = 0b, w = wb is shown in Figure 6.4. The required linearizing torque T, obtainedIfrom (6.5) is shown in Figure 6.5. Clearly, substantial additional torque capability is needed

to implement, the exact PFL control and decouple the effect of the flexible appendage on the

rigid body attitude. A principal focus of the FY89 project will be to investigate options for

approximating the PFL torque so that both torque authority and torque bandwidth can be

relaxed. See the appendix on Slew Induced Deformation Shaping.

For optical LOS slewing the resulting relative LOS ALOS given in (6.2) will also be

of concern. Figure 6.6 displays the response in ALOS as obtained in (6.2) for the simple

planar slewing model. Clearly, excessive deformation of the secondary mirror orientation will

degrade the optical LOS after the completion of the primary body LOS slewing maneuver.

In the next section we describe a method for decoupling and PFL for the effective optical

LOS in addition to the primary body attitude by introducing additional control capability.

6.3 Optical LOS Slewing using Steering Mirror Compensation for Structural

Deformation.

For rapid slewing and precision pointing of space-based optical systems and essential consid-

eration is structural interaction with the optical train alignment and resulting degradation

of system performance. With respect to the benchmark model of the laser beam expander
we focus on the relative alignment of the primary and secondary mirror due to elastic defor-

mation of the metering truss. Throughout this study we have assumed that the introduction

of active structural control on the metering truss is precluded by considerations of optical

path occlusion from expanded cross section of the truss members with additional control

components. The system study [Lea871 considers various options for truss configurations

and strut material but does not consider active control of the truss.

It is easy to show that PFL of the simple model of effective system optical LOS given in

(6.1) using the rigid body torque Tb only is not feasible because the system response from Tb
to PLOS is nonminimum phase. This is an essential characteristic of distributed parameter
models for structural dynamics with one or more spatial dimensions. As is well known for
the case of linear models for such systems the response from generalized force control to

position output will be minimum phase only if the point of control and observation are
spatially colocated. However, in this case additional control degrees of freedom are available
using the optical system components. Referring to Figure 6.1 the optical steering mirrors
are included to provide fine pointing adjustment of the optical LOS.

('onsider a simple model of the effect of relative angular motion of the steering mirror,

0,, on the system relative LOS (measured in the primary body fixed frame) given by,

LALOS = 2{7-(e) + 0(tl} - 20,,. (6.7)

We assume that the steering mirror is mounted on the primary body. Its dynamic interaction
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with the body is given by the modified equations of motion (for the reduced order model);
[I + TNn] rPb + Im&.m + NT + + VN Tb, (6.8)

In(w'b - WM) = T., (6.9)
N + -W iVNq + K, + K,79# + B,7 + B,7O= 0, (6.10)

No9 + d3,N.who4- + 9 + Koi B + B99 ± B4iT = 0, (6.11)

where [m is the steering mirror inertia and T, is the control torque applied to the steering
mirror in the body frame. We have assumed a frictionless mount.

We now show that. the two-input, two-output system from (Tb, T,) - ( 0b, 0,) is relative
degree 2, minimum phase, and can be linearized by PFL transformation. Furthermore, the
resulting PFL response is decoupled in the sense that after the introduction of nonlinear
feedback the response from the new synthetic inputs (v1 , v2 ) i- (0b, 0,) is of the form,

I 0m, =V 2 .

To compute the 2-input/2-output PFL torques we identify a transformation of the gen-
eralized coordinates;

y, =(6.12)

Y2 2{i7(f) + 0(t)} - 29.. (6.13)

From the finite element model described in Section 3.4.2 N e can see using B-splines that the
local slope is obtained as,

0@a4r(z) ::

I7rh(z,t).=t q O )(t) = -(-f)rtN(t), (6.14)

so that we obtain the relative LOS for the finite element model in the form,

ALOS 21[0,. 0, -(E)]ij + [0.... ,0, 1]0} - 20m,
T +E fi-20,. (6.15)

From the above we can rewrite the modified system equations of motion in terms of the
new generalized coordinates YI,Y2 and using the FEM LOS approximation as,

[M + -TN, ojy' jI, m2 + [NT + TI,,,+ + [N , + 1m]

± 2p1 TNi7l = Tb, (6.16)

Iml " my2 I -m-r_ I,70 = T_, (6.17)

N,,7 + N .,,. - y'NI,7i + Kfi + KI 79 + B,77 + B,19 0 0, (6.18)

NeO + ' Nwhse + Koo + KT A + BeO + Br78= O. (6.19)
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U Then the required decoupling torques Tb, Tm can be obtained directly from the above

equations in the form

T = - [T -Imc]j + [N',+ I + 2

+ [M + TNIV } - ImCt 2, (6.20)

,7Tm - In - 'j - . Imc x + 2I,a 2 . (6.21)

The required slewing controls can now be generated for the decoupled dynamics of the
principal body LOS y' = Ob and relative (body frame) LOS, y2 = ALOS exactly as before.

I Remark. In this form it is clear that the PFL obtains the decoupled, linearized relations
by exact cancelation of terms. It is also clear that potential for relatively simple implemen-
tation using accelerometers may offer advantages in this case sin.:e the PrL :,iitrol is then

insensitive to stiffness and damping properties of the elastic appendage. A goal of the FY89
effort will be to investigate the potential for the use of simplified and reliable PFL iiple-
mentation using low cost, solid state accelerometers at numerous locations on the structure.
We note that. conclusive results in this area can be obtained only after a dynamic model
of the accelerometer is included in the analysis and control design. The potential for such
control implementation is important for several reasons not the least of which is the evolving
technology for structural components with embedded solid state sensors and actuators (e.g.
using piezoelectrics) [De86].

6.4 Sinulation Results for Optical LOS Slewing

I The above PFL decoupling control (6.20)-(6.21) was simulated for the ideal case with the
addition of the steering mirror dynamics as given in (6.16)-(6.19). The resulting response
in the principal body LOS 0 b and the relative (body frame) LOS, ALOS, for a 30 degree
slew are shown in Figure 6.7. The required linearizing torques T and T, are shown in
Figure 6.9-6.10. The ideal commanded acceleration for the rigid body slew a, is identical to
that obtained for the case of principal body slewing since the slewing controls are decoupled
by the introduction of PFL torques. A measure of appendage deformation resulting from the
slew can be obtained by examining the response of the steering mirror 0, (see Figure 6.8)
and the deformation at the end of the appendage (at the secondary mirror) 7N, ON (see
Figure 6.11). In this framework requirements for stiffness and damping of the metering truss
can be determined based on structural limits of the secondary mirror deflection and angular

limits of the steering mirror without concern for effective dynamic pointing precision.

I 7 Survey of Methods in Robust Nonlinear Control

7.1 Importance of Robust Control Design for Nonlinear Slewing Control

Recently considerable research effort has been expended in developing new methods for
rohu.st control system design. The goal of these methods has been to obtain quantifiable
liits on the stability and performance of a control system with internal dynamics (of both
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changes in time or initial model imprecision. The importance of such methods can not be
underestimated in practical applications. The primary emphasis in the engineering literature
of tlie past 10 years on the robust control problem is the use of hnear plant models and linear
control law dynamics.

Early results of Nyquist [Nyq32] and the Bode [Bod45] provided an analytic basis for
the fundamental engineering tradeoff between dynamic stability and a scalar loop-gain pa-
rameter of a single closed loop feedback control. In the early 1970's the focus of research

turned to the robust stability of multiloop feedback control utilizing various extensions of
Nyquist's theorems as pioneered by Rosenbrock [Ros74, Ros72]. Recognizing the critical
need to predict stability of feedback control with certain nonlinear effects the engineering
community developed various ways to bound certain nonlinear effects with linear systems
and obtain (albeit somewhat conservative) stability results. A central contribution in this
area is the work of Zames [Zam63] which provides the basis for the cornerstone of robust
linear control theory known as the small gain theorem. Using this theorem results can be
obtained for the class of sector bounded nonlinearities and have more recently been extended
to multiloop control systems by using singular value bounds (i.e., L, norm) of the transfer
function (matrix) frequency response. An essential feature of such methods for design is that
the design engineer must have a model for the overall nonlinear system where the nonlinear-

ities are memoryless and sector bounded and interact, with a model of the system (linear)
dynamics through a fixed number of feedback loops. Thus these methods support design of
linear control systems for plants which may contain certain isolated nonlinear effects. In this
study we have considered a more direct and comprehensive approach to nonlinear control
system design in which the system nonlinear dynamics are utilized to effectively 'linearize'

certain aspects of the system response.
Our main interest in the robust control problem for slewing control of flexible structures

stems from:

1. Concern for practical application of advanced nonlinear control system design methods
including both EFL and PFL for the class of models considered for slewing of SBL type

systems. Such concerns include:

(a) predicting performance limits with model dynamics based on imprecisely known
parameters

(b) predicting performance limits with reduced order model dynamics,

(c) predicting performance in the presence of variation of system dynamics due to
environmental changes effecting model parameters,

(d) predicting performance in the presence of variation of system dynamics due toIparasitic dynamics unknown at design time.

2. Concern for design of laboratory experiments to demonstrate advanced nonlinear con-
trol laws for rapid slewing control of flexible structures. Such concerns include:

(a) predicting performance with modeling imprecision due to both parasitic dynamics

and parametric variation,
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(b) assuring stable and reliable operation of experiments including stable "tune up"
procedures for testing high performance, high gain control laws.

In this section we will briefly review some available results in robust control system design
for nonlinear systems which we believe will be important tools to address the above practical
concerns. It is important to emphasize that the crucial issue in robust control of nonlinear
slewing of flexible structures will be the incorporation of concerns for the parasitic (high
frequency) dynamic uncertainty which is intrinsic in the distributed parameter dynamics of
tile flexible structure and the nonlinear (and parametric) uncertainty due to the dominance
of certain nonlinear effects (such as Coriolis and gyroscopic accelerations) which arise because
of the dynamic requirements of rapid slewing.

7.1.1 Classification of Robust Control Results and Assumptions

It is sometimes useful in surveying a literature as diverse as robust control design has become
to attempt to classify results according to types of assumptions placed on the system dynamic
model. The diversity available reflects an intense area of research where-very roughly put-
the goal is to obtain the least conservative characterization of conditions for robust stability
andl performance with the least restrictive assumptions on the plant dynamics. Thus we can
classify available results according to assumptions on model uncertainty as:

e parametric versus nonparametric (or parsitic),

9 structured versus nonstructured.

Structured vs. Nonstructured Uncertainty. We indicate model uncertainty as struc-
turrij if the uncertainty is characterized as being localized in the system dynamics (i.e., it
effects a structured portion of the system model only) and unstructured otherwise.

Parametric versus nonparametric uncertainties. Parmetric models for dynamic un-
certainly include cases where both physical and artifical model parameters are allowed to
vary over specific sets. Such plant model variation does not incorporate changes in model
order in a natural way. Nonparametric (or parasitic) model uncertainty attempts to char-

acterize model variation which can incorporate changes in the effective dynamic degrees of
freedom. We remark that the methods of singular perturbation analysis decribed for example
in Kokotovic [Kok85] attempt to reconcile these two views of model uncertainty. As such we
expect these method to play an important role in robust control of rapid slewing of flexible
structures. (See Appendix C for preliminary results on application of these ideas to design
of control for a flexible multibody system.)

7.2 Robust Stability of Linear Systems

By way of introduction, motivation, and comparison with available methods for nonlinear
systems, we briefly review the general results for robust stabilization of linear systems.

The two common linear multivariable plant models used in literature are:
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" State-variable models generally written in the form:

;iz=4x +Bu, Y=Cx+Du

* Transfer-function matrix models denoted G(s) where G(s) is a p x q matrix with entries
made up of rational functions in the complex Laplace transform variable s.

Each one of these plant models requires its own type of uncertainty model. Some of these
uncertainties for state-variable models can be modelled as follows:

Parametric unstructured: Let Ax - (A + 6SA)x. where 6A is constrained only in norm,
i.e, I , (4 < a.

Parametric structured: Two examples of model uncertain assumptions in this category
are:

1. A.x (4 + - i qiAi)x, -1 < qi < 1 where the parametric uncertainty, represented by
q;. is structured by virtue of the structure of the Ai.

2. Refering the linear state space model above (4, B) -- (A + 6A(q), B + 6B(q)) where q
is assumed to belong to a known compact set. We say SA and SB satisfy the structure

matching conditions if:
6A = BD, SB = BE. (7.1)

For robust stability of linear systems it. is often more useful to characterize model uncer-
tainty in terms of the frequency response or transfer function model. Uncertainty in G has
been characterized as:

Multiplicative unstructured nonparametric; e.g., G - (I + L)G or G(I + L) where
I IIL(ji,)l < lr(w). Here, HLH1 denotes the norm of the matrix L.

Additive unstructured nonparametric; e.g., G - 6G, where IISGII < la(w).

Additive/multiplicative structured nonparametric; same as above but only certain
elements of L and bG are variable.

We remark that using transfer function models for uncertainty one can readily charac-

terize parasitic dynamic uncertainty. This is a central reason for the popularity of frequency
response methods for control system design. Recently the development of control design
methods based on worst case optimization in the Hardy space H' of transfer functions has
provided a formal design approach for linear systems based on a well defined optimization

criterion which embodies robustness [Zam81].
The vast literature on optimal robust control design is outside the scope of the present

study. It significance for EFL and PFL is a subject which we will study in more detail in

the next. year. For now we confine our comments to its potential for addressing the robust
stabilization of the effective linearized system obtained from the nonlinear EFL (or PFL)
compensator (cf. [Spo86]).
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7.2.1 A State Space Approach for Linear Systems

An important approach to robust control system design was obtained by Barmish, Corless,
and Leitimann [BCL83]. They use Lyapunov-function theory to design robustly stable con-
trollers for linear systems. The main advantage of their method is that, as we will see later, it
can easily be generalized to nonlinear systems. The authors show that if the plant dynamics

are given by:

a l t e M atching cond=tw s: x (A + A )x + (B + A B ) u (7.2)

AA = BD, AB= BE (7.3)

hold for the plant uncertainty, with 11 D 1< PD and 11 E 11< 1. then the state feedback
it = -2o 0BPrx will always robustly stabilize System (7.2), provided that the positive scalar
-n is chosen sufficiently large. The matrix P in the state-feedback control law is given as a
solution of the Lyapunov matrix equation, ATp+PA = -H, where H is any positive definite
matrix. The matching conditions (7.2) do impose a special structure on the permissible
plant, variations. Patel et al [PTS77], and Yedavalli [Yed85] also exploit Lyapunov function
theory to obtain conditions on the A matrix in the state-variable plant description for robust

st abiization.

7.3 Robust Stabilization of Nonlinear Systems.

Recent developlnents in feedback design of nonlinear systems fall into two categories. Results
which are g9omclric in nature are essentially independent of a coordinate system for the state
space and view the system as a collection of vector fields evolving on a manifold which can
be embedded in a larger Euclidean space. A second body of results are asymptotic in nature
and use Lyapunov and/or singular perturbation techniques.

7.3.1 Geometric methods in nonlinear control.

The inital emphasis in the development of geometrical methods for nonlinear control was to
extend the well known linear theory of Wonham [Won74] to linear systems which are affine
in the control variable. The methods of EFL and PFL described in this report are examples
of this line of development.

Unfortunately, these geometric techniques present some limitations from the engineering
point, of view. One such limitation is that results of a geometric nature are sometimes difficult

to apply in practice because highly accurate models must be available in order to verify that
certain exact conditions of the theory are satisfied. Moreover, since the construction of the
linearizing feedback involves "cancellation" of certain nonlinearities, it. leaves open many

questions regarding sensitivity and robustness of the control implementation. One approach
which has been pursued by several researchers is to use the available freedom in the linear
controller design (once effective linearization has been achieved for a nominal model) to
recover stability robustness [MC80, GMS82].

It. is interesting to note the interpretation given by Meyer [Mey81 to EFL and its relation

to a trajectory-dependent Taylor series expansion of the nonlinear vector fields. Consider a
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nonlinear system given by,
,i'(t) -- f(x)±+g(xju.

I To obtain EFL control we seek transformation of the state and feedback so that the effective
system is in a linear canonical form,

I Y 2,

I y)n =V.

where the transformation is effected by the maps T(x, u) - y and W(y, v) -u which
effectively invert the transformation to linearized coordinates. If we consider a Taylor series
expansion of the nonlinear system in the neighborhood of a given state trajectory x(t)-which

we assume is valid pointwise on x(t)-we obtain a linearized model of the form

x = (ao + ait) + Ax + Bu,

I where ao,a1 , .4, B are constant (at least locally). Under these assumptions Meyer suggests
that the effective T and IV maps can be interpreted as (linear) transformations of the local
nonhomogeneous linear model just obtained to the canonical form via

y = Tx + co + cit,

and(

= v + Ry 4- bo + bit.

I The matrices T. W, R depend on the homogeneous part (A, B) of the local linearized model.
However, the introduction of nonhomegeous part in the effective linear system is nonstandard
and results on robust linear control must be carefully reevaluated in this context.

7.3.2 Asymptotic methods

The second body of results consists of mainly Lyapunov-based techniques to design robustly
stable controllers for the nonlinear system. Roughly speaking, a nonlinear system i = f(x)
is asymptotically stable if there exists a function (Lyapunov function) V(x) which is positive

for all ion-zero x and which has a time-derivative V(x) which is negative for all non-zero x.
Obviously. if the inequalities in question are true for all admissible variations in f(x), the

Lyapiinov stability theory also provides conditions for robust stabilization. An early paper
on the application of Lyapunov function to robust stabilizaton is the paper of Gutman and
Leitnian ['L76]. The monograph of Safonov [Saf80J also contains an extensive discussion of

the application of Lyapunov functions to robust stabilization.
Iii contrast to geometric methods, asymptotic methods do not rely on transforming the

system into a more convenient canonical form; rather, they consider uncertainty as a class

of bounded perturbations to the state model. The methods often employ effective high-
gain feedback to combat uncertainty and exogenous disturbances. Among such methods are
the so-called Varible Strucure Control ( VSC) methods which were discussed in the previous
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report [BBK88] and the controller structures proposed by Corless and Leitmiann [CL81] which

generalizes the design for linear systems described previously. The Corless-Leitmann robust
controller guarantees a form of stabilty called uniform ultimate boundedness of the state to
an arbitrarily small neighborhood of the origin; and might be termed practical stability. The
type of uncertainty models they consider contain mainly parametric structured uncertainties
satisfying a generalized version of the matching conditions (7.2). The need for these matching
conditions represents one of the main restrictions of robust control methodologies, for both
the linear and nonlinear case. In the next year we will examine the application of these

assumptions for the class of nonlinear models described in this report and investigate the
meaning of the matching conditions for slewing of flexible structures.

I 7.3.3 Parametric structured uncertainties

Geonetric methods. The main geometric results in the literature on the robust stabi-
lization of nonlinear systems with structured uncertainties involve two assumptions which
may restrict, application. The first is that the results are restricted to the class of feedback
linearizable systems; i.e., systems which are exactly linearizable (using EFL) or minimum-
phase systems (using PFL). The second restriction is that the uncertainties which account for
the difference between the true plant and the simplified given model, are assumed to satisfy

the structure matching conditions. The basic design paradigm is that once the linearizing
change of coordinates and feedback is applied to the uncertain nonlinear model, a perturbed
linear model is obtained. The key point is that the uncertainties on the linear model will

retain the same nice structure of the uncertainties (via matching conditions) on the nonlin-
ear model. The available freedom in the linear system design phase can then be used (as
suggested by Meyer [GMS82] and) as discussed in the previous sections. Spong [Spo86) and

Kravaris [Kra87] follow this same approach and use a similar type of controller. Kravaris's
result is less restrictive since he assumes only that the system is minimum phase and applies
PFL rather than EFL. (As we have suggested throughout this study PFL is an essential
practical feature of the control problem for rapid slewing of flexible structures.)

For simplicity of presentation we describe Spong's approach. The true plant is assumed

to be of the form:

X f(X) + ,Zi1gi(X)ui(t) (7.4)

= f(X) + G(X)u

with the usual smoothness assumptions on f, 9g. . .,g, on R" and f(0) = 0.

Assumption 1: There exists a diffeomorphism T(x) on Rn and nonlinear smooth functions
I (x), 3(x) of appropriate dimensions, with /3(x) invertible, such that with the change of
coordinates z = T(x) and nonlinear feedback it, a(x) + /3(x)t, the plant (3) becomes:

" Az + By (7.5)

with (A. B) in Brunovsky canonical form. The design model is:

,i = f(X) -f G(x)u (7.6)
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where j, 0 are nominal versions of f, G respectively.

Assumption 2 : Let

Af(x) = f(x)- f(x)

denote the mismatch between the plant and the model. We assume there exist, smooth
functions D(x), E(x) on R ' such that the following matching conditions are satisfied:

I f (x) = 6(x)P(x),
I^

,(x) = ,'(x)E(x).

Assumption 2 combined with Assumption I implies that the model (7.5) is also feedback

linearizable with the same change of coordinates T(x) used for the original plant and a
nonlinear feedback it = (x) + )(x)v to the same canonical linear system (7.5). An example

that satisfies these constraints can be found in mechanics. Two rigid robot manipulators are
in the same orbit under the action of feedback, that is they can both be linearized using the

same change of coordinates z = T(x) and different feedbacks provided that they have the

same number of joints and powered and unpowered joints of the manipulators coincide.
If we apply the linearizing change of coordinates z = T(x) and the nonlinear feedback

It = 6t(x) +(x)v to the true plant (7.5), we obtain a perturbed linear system with structured

uncertainties:

where= Az + B{t, + 77(z, v)} (7.7)

q(z, v) = 3()-'{D() 4- E(x)(a(x)+ /3 ()v)LT-,(.)},
O (Z) +-¢:v

The following additional assumptions are made on the nonlinearity i(z, v);

Assumption 3: There exists a positive constant ct < 1 such that for z E R":

O(Z) 11< c1I
Assumption 4: There exist positive constants a and b such that for z G R":

()<I_ a +bII 11I
1
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I Design of the v-controller. Several robust controllers can now be introduced:

(i) The first controller proposed is a linear dynamic compensator v(s) = C(s)z(s). The
multi-loop version of the small gain theorem [DV75] shows that the control signal v(t)
and the "uncertainty" 77 are bounded in L , provided C(s) is designed in such a way as
to satisfy the modelling assumptions (3) and (4) and the stability condition provided

by the small gain theorem. To design such a compensator C(s), the stable factorization
approach which was developed during recent years by various researchers and given a
exposition in [Vid851, is used.

(ii) The second approach for design focuses on practical stability. One designs a control law
for v that guarantees the uniform ultimate boundedness of the state z(t) to an arbi-
trarily small neighborhood of the origin. Two state feedback schemes can be designed

using this approach to guarantee stability of the uncertain linear system (7.6) within
the modelling assumptions (7.5) and (7.5). The first. one is a saturating nonlinear
controller and the other one is a high gain linear controller. The design methodology

is based on the second method of Lyapunov.

The controller t, is taken as v = Kz + At, where K is chosen so that A + BK is Hurwitz.
The uncertain linear system (7.6) becomes then:

(A + BK)z + B{Av + 7(z, Av)} (7.8)

One way to design At, is (following the work of Leitmann [Let81]) to choose Av as a saturating
nonlinear quantity:

-p(z, t) Brp:• if 11 BTPz 1> (
p. if BTPz E(7.9)

for some (given) E > 0, p satisfying,

1II 5 p(Z,t), (7.10)

11 Al' 1 < p(Z,t), (7.11)

I and P, the unique positive definite solution to the Lyapunov equation;

(A + BK)Tp + P(A + BK) + Q = 0.

I The idea is that the function V(z) = zTPz (which is a Lyapunov function for the linear
system (A + BK, B)) is a Lyapunov function for the nonlinear system (7.7) provided that
77 satisfies (7.9). The uniform ultimate boundedness set can then be made arbitrarily small
by decreasing E. For E = 0, the system is asymptotically stable and the control law (8) is
discontinuous.

Another way to design At, follows from the work of Thorp, Barmish [TB81] and others
on robust linear control. Here we take Av as a strictly linear, but high gain control law;
I Av(t) = -,B'rp.,

where -y > 0 is sufficiently large so that the state z(t) is uniformly ultumately bounded. The
calculation of -y and the ultimate boundedness set. can be found in [TB81].
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Lyapunov-based methods: As mentioned earlier, most of the results that use Lyapun-
ov-based techniques to design robustly stable controllers for nonlinear systems use eitherIexplicitely or implicitely high gain feedback to combat uncertainties. One of the interesting
results on robust stabilization of nonlinear systems with parametric structured uncertainties
is the controller proposed by Corless and Leitmann (as a generalization of their earlier linear
control methods). The stability concept used is termed "practical stability" and differs
slightly from the traditional Lyapunov stability. Normally Lyapunov arguements are used

in design t~o guarantee uniform asymptotic stability of an equilibrium state. However, in
Ii e i t onte uniform tiate of an tolsom st Howee inpractice one is often content with uniform ultimlate boundedness to some set in finite time.

The uncertain dynamical systeni is assumed to be described by the state equation,

x = f(x(t),t) + Af(x(t), t) + [B(x(t), t) + AB(x(t),t)]u(t)

where x(t) e R" is the state, u(t) E R m is the control, and f(x,t),Af(x,t),B(x,t) and
AB(x, t) are matrices of appropriate dimensions which depend on the structure of the system.
Additional conditions may be imposed on how Af and AB structurally enter the state
equations.

Assumption 1: AXf and AB satisfy the structure matching conditions; i.e., there are

mappings
h(.): R' x R - R ' and E(.): R" x R - R" Xrn

such that

Af(x,t) = B(x,t)h(x,t)

AB(,t) = B(.,t)E(x,t) (7.12)

for all x C R" and t E R.

Because of this assumption, all uncertain elements can be "lumped" and the system is
written,

i(t) = f(x(t),t) + B(x(t),t)u(t) + B(x(t),t)e(x(t),t). (7.13)

The "nominal" system, that is, the system without uncertainty, is described by

x = f(x(t), t) + B(x(t), t)u(t).

Based only on the knowledge of the maximum possible value (which may depend on x and
t) of the norm 1e(x,) 1, the aim is to find a feedback control u(.) : R x R - R such that
given (xo, to), a corresponding response x(.) : [to,oo) - R exists, and every such response
enters a neighborhood of x = 0 in finite time and remains within it thereafter. This is
uriform tultimate boundedness. The following additional conditions are also assumed:

Assumption 2: The known functions f, B as well as the unknown function e are contin-
uous functions, and f(O, t) = 0 for all t G R.
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Assumption 3: The norm of the uncertain element is bounded by a known function; that
is, for all (x.,t) e x RII1 e(x, t) 11< p(x, t)

where the known function p is a continuous function.

Assumption 4: Given a compact set E C Rn and a compact interval [a,b] C R, there
exist continuous functions m,(.): [a, b] - R, i = 1,2, such that for all (x, t) E E x [a, b]

Ii f(x,t) I 1 M (t),
II B(x,t) 11 p(x, t) < m2 (t).

Assuiiption 5: The origin, x = 0 is uniformly asymptotically stable for the uncontrolled
nominal system i f (x(t), t). In particular, there are a C' function (Lyapunov function)
V(.) : R" x R - R+ and continuous, strictly increasing functions R (.) - R+, i = 1,2,3
which satisfy

-i( ) = 0, i= 1,2,3

Iim 7i(Y') = , I= 1,2

such that for all (x,t) C Rr' x R
I "rl(11 X 11) < 1"(X,0 < 1201 X 11)

aV(x, t) + VTI,"(X, t)f(x, t) I
at X , )f((11 I1).

In [CLS1, a. class of state feedback controls is proposed. A member of this class, u(.)

R" R R", is a continuous function such that, for given c > 0,

u(z,t) = p (x, t), if pI(x,t) I> C, (7.14)Iit(x.t)
II,,(x,t) I <- p(z,t}, if I I,(,r,t) I11_ c. (7415)

~where
w h e r e i ( x, t ) = B T( , , t )V I ,( X , t )P ( X, t ).

A particular example of such a control is

{ -___ p(x,' t) if 1 j,(X, t) Hj>
~~It(X, t) =m Xl( 't011 \

-(,0.4  p(r' t) if I I i.(X, t) 1<

It is shown in [CL81) that a control of the type (7.14)--(7.15) guarantees ultimate boundedness

of all possible system responses within an arbitrarily small neighborhood of the zero state
(by letting - 0). Furthermore, the set of ultimate boundedness as well as an upper bound
on the time interval required to reach it are given explicitely in terms of the functions j,
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defined above. More specifically, it is shown that a solution z(.) : [to,t] - R', x(to) xo,
of the closed loop system:

x(t) = f(x(t), t) + B(x(t), t) u(x(t), t) + e(x(t), t))

with (x(t), t) satisfying (7.14)-(7.15), exists and satisfies

II xo II< r -11 x(t) I< jd(r), Vt e [to, t ]

whlere

d(r) 1-' ( o- 2 )(R) ifr < R
-' ,,2)(r) if r > R

and

R = 1 1(2E).

Furthermore, the solution has a continuation over [to, oo) and for 1 x0 11< r and given
S> (1-1 o - I)(R)

! x(t) j< d, Vt > to + T(j,r)

where

T(d,r) 0- if r <

-t if r > 1 ?

and

7.3.4 Nonparametric nonstructured uncertainties:

In the case of unstructured but "not too large" nonlinear model/plant mismatch, Kravar-
is [Kra87] follows exactly the same principle as described previously; i.e., use feedback to
make the system linear then put a robust linear controller around it to stabilize the overall
system. The interesting point in this procedure is the fact that Kravaris evaluates the
unstructured uncertainty in such a way that it is possible to apply frequency-domain results
from linear robust control literature. More precisely, and since only partial linearization is
used, the approach taken is the following:

(i) Make the input/output response of the system linear by appropriate input-output lin-
earizing state feedback.

(ii) Evaluate the uncertainty as a multiplicative band of the resulting input-output system.

(iii) Design an external robust linear regulator on the basis of linear theory.

Step (i): Input/Output linearizing state feedback: Consider the nonlinear system:

-= (x) (6+ g())
y = h(x) (7.16)
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where x E R", it E R, y E R. The problem of finding a static state feedback of the form
it = i,,(x, v) such that the v - y input/output is linear and of minimal order was posed and
resolved in [1si851. The results are:

The minimal order of the v - y system is the relative degree of (7.16), i.e., the smallest
integer r satisfyng:

(dhad -t g ) # 0.

The input 1'ooutput linearizing state feedback is given by:
7r_ k = o, r'(h)

U - f°rkL(g) (7.17)
( - 1 '3 (dh, adf- ( )

where . are arbitrarily selected numbers. The corresponding closed-loop response is given

vd "

k tk

Assumption 1: Assume that. the nonlinear system (7.16) is minimum phase, that is the

(n - r) unobservable or zero dynamics are stable.
Step (ii): Structure of the uncertainty: The way Kravaris evaluates the uncertainty is by
assuming that the plant/model mismatch can be expressed as a Volterra operator applied
to the model. That is, if we consider the family II of nonlinear systems y = A-(u) (not
necessarily of the same order), then:

1. For all plants fl in fl, there exists a Volterra operator of the form:

A,..)=/,(t- r).(r)dr

I 
such that:

M(u)- 1(u) = AmM(u), Vit

where M(u) represents the input/output map of the model (7.16).

2. An upper bound (w) of 1, is available such that

I l,(W) < l(w), VW

where the overbar denotes the Laplace transform.

I Step (iii): Robust linear control desin for linearized dynamics: Once again, results
from the robust linear control literature are used. Since Kravaris is using frequency
domain bounds on the uncertainty, he applies standard linear system results for robust
control [DS81]. For the family of plants l-, if we take the nonlinear state feedback (7.17),
and the external feedback controller:

I a~~~~~0) = ~)~~s

and we assume that the closed-loop system corresponding to the model Al is stable,
then the closed loop system will be stable for all plants in H if:

C'(iw) 1
k.= o_03k(iw)k + C'(iw) 1(W)
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I 7.3.5 Parasitic/Unmodelled dynamics:

In [TKM88] Kokotovic and Marino attempt to unify geometric and asymptotic method-
ologies. While geometric conditions such as conditions for feedback linearization are
restrictive but exact, asymptotic time-scale results are less restrictive but approximate.
A geometric characterization of asymptotic time-scale properties is the existence of an
invariant manifold in which the system is described by a reduced order model (Marino
and Kokotovic [IMK88]). One possibile way to relax the feedback linearization con-

ditions can be obtained by requiring that they be satisfied only for a reduced order
model. This idea has been suggested by Kokotovic [Kok851 and developed for a flexible
robotic manipulator in Spong et al [SKK87]. It. is shown that the nonlinear controller
preserves the regulation property in a prescribed stability region in the presence of
unmodelled dynamics. The size of the region can be estimated.

In most applications, the design model is of lower order than the plant because of
some unmodelled dynamics present in the plant. Following [TKM88] we assume the
singularly perturbed model of the plant can be obtained in the form,

x = fi(x) + F1(x)z + Gl(x)u, x C R", u e R', (7.18)

I - = f 2(x) + F2(x)z + G 2(x)I,. z C R', (7.19)

where the functions fi, f2, F1 , F2 , G1. C2 are bounded and differentiable with respect
to x for all x E Bx (a 'ball' in Rn), (x, z) = 0 is an equilibrium point, and /I > 0 is the
singular perturbation parameter. z is the state of the unmodelled dynamics.

I Assumption 1: The unmodelled dynamics z are asymptotically stable for all fixed
values of .X E B,, that is, there exists a constant o, > 0 such that:

I ReA{F(x)} < -o- < 0.

I Remark: We note that the stability assumption of the unnodeled or residualdynam-
ics is a natural one for structural control since we will utlitmately rely on the natural
damping of the structure to stabilize its (possibly very) high frequency dynamics.

The assumption it < 1 implies that the unmodelled dynamics are "fast," relative to
the dynamics of x. A reduced order model can be obtained by taking p - 0 which

obtains the model,
x= f(x) + G(x)i (7.20)

where f and C are defined by:

f(x) fi(x) - F,(x)F2 '(x)f 2 (.r).

I = , - (x)F 1 (x)G2(r).
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Assumption 2: Vx E B . , the reduced order model (7.20) is feedback linearizable,
that is, there exists a state diffeomorphism i = f(x) and a state feedback control
ii = a(x) such that, given an n x n Hurwitz matrix A, the identity:

I(DX [f(x) + G(x)a(x)] = A(x)
ax

holds for all .x a B,. If (, and a are applied to the full order system (7.18)-(7.19), and
the new fast variable 71 = z - h(x) is introduced where h(x) is the so-called "manifold

function"
h(x) = -F,-1(x)[f2(x)4- G2(x)t(x)],

then the full order system becomes,

xi =D 1 AD(x) + F(x)i7, (7.21)

- F,(x),- p h. (7.22)

Stability analysis: Let P, and Pf(x) be defined as the symmetric positive definite
solutions of,

PA+ATP = -I.,

P(x)F2(X) + F2(x)Pf(X) =-I.

Then the Lyapunov function to be employed is,

V(X, 77) =c CT(X)P,¢(X) + c 2 YTpI(X)r7. (7.23)

This function is a weighted sum of a slow part characterizing the stability properties
in the manifold 77= 0, and a fast part characterzing the off-manifold behavior.

If the bounds cj, c; and c* are evaluated over x E B, as,

211P(x)H k < cj,
2 1 PP.(x)Fl(x) --- c,

2 II Pf(x) 11 k'+ 11 Pf(x) < c',

where the constants k- and k' are determined from the requirement that for all x E B;

H h ,(x),j(.)A fI < k'

H hx,(x)F(x) < ;,

then using the Lyapunov function (7.23), the following stability result is obtained:
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Result: The equilibrium x = 0, 77 0 of the feedback system (7.18)-(7.19) is asymp-
totically stable for all:

1I ci(0, ) (7.24)

and an estimate of its region of attraction is:

sD = {r,71 : V(x, 7) _ c}

Iwhere cis the largest constant such that the set {x : V(x,0) < c-} belongs to B.. This

result describes a robustness property with respect to dynamic uncertainty. It states
that. the stability properties of the reduced order design are preserved, at least in SD,

for unniodelled dynamics scaled by any ft in the interval (7.24).

I 8 Conclusions and Directions for FY89 Effort

We have demonstrated using a combination of simulation and analysis the potential

benefits of nonlinear control system design for rapid slewing and precision pointing

using the ideas of PFL. In the next year we will proceed to design several laboratory

experiments to further demonstrate feasibility and to test options for implementation
which provide robust operation with imprecise modeling of the elastic structure.II,

I
I
I
I
I
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A A Lemma for Lagrangian Modeling

In this appendix we provide some useful identities for performing the calculations

indicated above.

Consider a spatial coordinate frame, denoted the 'body' frame rotating relative to a
second reference frame, denoted the 'inertial' frame, with angular velocity W in body
coordinates. If the relative angular position is characterized by parameters { E 3, say

Euler parameters, then u; = r( ) , and we have the following.

Lemma 1 Consider a function K(w), where w = Then

I Md (9 K T rd l0 ~ ~ +l w x()7/c a (A. 1)

where
a OK=T (A.2)

OW]

Proof: Direct computation yields 
A2

* a (O/K) .

and
d OK OK d O1

We need only show that

Let ri denote the ith column of E. Then the above matrix equation can be interpreted
as three vector equations

0-,( W (= , + U X oi, fori= 1,2,3

The validity of these equations follows from the observation that each (ri is a vector
denoting the coordinates of a point P in the body reference franie. The quantity on
the left. is the velocity of the point, P in the inertial frame, whereas &, denotes the

velocity of P in the body frame.

El



I
B Supporting Computations for B-spline model of planar

slewing with uniform Beam appendage

In this appendix we summarize the computation by explicit integration of the required
tridiagonal matrix parameters obtained from the B-spline finite element model for
planar slewing of a rigid body with attached appendage consisting of a uniform beam.
See Section 4.4.1 for details of the model development.

By definition, the N x N matrix N" given in (4.69) has elements given in terms of linear
B-splines as

[NJi= (. Bi(z)Bj>-(z) dz

for i,j 1,. . . , N. Given the "hat" shaped, linear B-spline,
I (e

Bjz) l (~ [- i(f)]B;(z) + (E)[(i + 2)- - z]B°i(z)

where the zero order B-spline is chosen with continuity from the left.; i.e.,

B z) 1, if Xi< < Xj+1 (13.1)
B°(z):={ 0, else

Then we have three nonzero cases to consider.

Case 1: i = j N. Then

[NiQ]j ZN 1z =
[ =~ (I)N(1 - z) dz -3 .

Case 2: i = ± 1. (Refer to Figure 2.1.) Here we obtain a simple form for the integral
by transformation of the variable and limits of integration;

[N]ii = o B1 (z)B 1_(z) dz

1:- ()( )(_- z) dz

L,)2jIx(L -x) dr
= (-V -6 N

Case 3: ij <-N.

[Nb3  j Bi' I(z) B-1(z) d--

00

t )'( - - 2 _)2 d--f: ) (L)2(zj z) d:
1-2-

= ~f -7Zxd IVz" dx

23f

3 3N
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-:. 0 1 2 ,v-jN N +#-

IFigure 2.1: Linear B-spline functions on z domain.

3 For the N x N tridiagonal matrix iV' with elements

1j (z)-Bj-,(z) dz

for i,j 1. N we obtain three nonzero cases.

Case 1: i =j < N.

[N',]j -N( j -)2 dz + dz- 2(-d).

Case 2: i j=N.

[ ji L ( dz - N

Ci'ase 3: i=j 1. For i=j + we obtain,

J -()' dz

I Similarly, for i j - 1.

The N x N matrix N' has elements

If[K'b= -B,. 1-(z)B'-I(z) d

which has two nonzero cases of interest.

Case 1: i= j.

' +I t.
[k'Ij ( )'( -:z) dz + - (_) (,-2 z dz 0

Case 2: i j+ 1. [f j (N) 2 - z) dz

I - (,N)2 )dX

* 2 o

| -2
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Case 3: i j-1.

']j -( ( f- x)dx=--
fo 2

Under the assumptions of the planar slewing model, the 1 x N coupling coefficient
matrix has elements

INT,7 pAjzBil(z) dz.

for i =1... , N. There are two cases of interest.

Case 1: i < N.

=B ((z:dz - iw )j- + + 2 )(±) - zj d:.
i T -f

Changing limits of integration by the transformation x z - zi in the first integral
*gives

f +( 1):[z -iZ(- )]dz- N (x + I'')xd

21- (k)(. ±+i.

IChanging variables (and limits) of integration in the second integral yields

I()Z[(i + 2 )(k) z] dz (7) (x + (i + 1)x)(x -

2[ i+ 1= + I.
N 6 + 2

From which we can obtain

I ftzB((z)dz ()2(1 +).

Case 2: i N.

jzB(z) dz fN ( -)z N - 1 l dZ
fo :N-1

,2(N 1

S(P-~2[I
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NONLINEAR MODELING AND

ESTIMATON OF SLEW INDUCED

STRUCTURAL DEFORMATIONS

Thomas A. W. Dwyer, III

and

Fakhreddine Karray

ABSTP.ACT MODEL OF A DEFORMABLE STRUCTURE AND EQUATIONS OF MOTION

A model of the nonlinear dynamics of a deformable For purposes of ilustration of the principles
maneuv ring multi body system is described, whereby involved, our structure will consist of a primary

olast;c aelor-at;onn are modeled by restor:ng forces ,uld mirror, attached to a -pacecraft, and a secondary mirror
di-sipaive forces at point mass appendages. This model attached to the primary in the shape of a Cassegrain
illDrought into bilnear form. Estimation of telescope by means of idealized massless links. The
deformation5 occasioned by rapid slewing maneuvers is prxmary mirror structure will also be regarded as
cirriO out by a filter based on a globally equivalent attached to the spacecraft by means of a massless

linear mnodel of the bilinear dynamics, and is qhown to link. Equivalently the same model can be thought to
he an improvement over the extended Kalman filter. To represent a laser beam expander, as in figure 1.
further alleviate the computational burden, the The simplified telescope part of the structure can
estimated deformation state i propagated between itself be modeled as a system of two masses attached
observations by a low dimensional operator spline together by a single "equivalent" link with "equivalent"
inLerpolator of bi~Lnear system Volterra ser:es, which stiffness and damping coeffic:ents, so that the same
is easily implemented. restor:ng forces at the secondary are obtained as if

with more than one link. The modeling i.s summarized in
:NTROOUC7 ICN the appendix. and figure 2 illustrates the geometry.

bxpressed in the body fixed coordinate system O(b
I ,

This paper proposes a new nonlinear, nonparametric b
2 

b ), the coupled vibrational, translational and

method for off line moocling and on line estimation, of rotational equationm 0: .ucn a structure oecome:

the deformation of a flAx:le structure, undergoing Vibrational:
rdpid rotat:onal maneuvers. . 2 2

In these circumstances, the structural stiffness o0 oy2Qy*[. Q ]y.COO 3P+La 0*Cy*Ky-f

and damping coefficients depend on the angular
acceieration w the angular rate w and the square of the Translational:
angular rate w . In the single axis case, the T 2 T o
excitatiTn ofthe 2 tructure is represented by the a oL Mo 0y2OYK[.Q2)y. f~f
vecLor u - (w, w , 2

w), to which the structural
dynamics responds as a "bilinear" (i.e.. parametrically Rotational:

excited) system. A similar technique for multiaxial
rotations yields a bilinear model with respect to matrix J0 J1 (Q ,y) J1 (y.y)w

valued excitations.
Two methods of estimation and modeling are combined W[J I (P , y)-1J(y.y)1 W

to acnievo deformation state determination: T T ta. A method based on a feedback linearized procedure r(oy) MR(w..yy-a 0 L 0 yC K W()d-
which gives an estimte of the deformation state by T,
means of a filter constructed from the equivalent * !C;Y)
linedr dynamics, whicri is faster than the extended
Kalman filtor. y denoteq the C2nxl)(for planar motion or (3nxl)

b. The modeling of the deformation state of the for out of plane motion) matr:x of deflection
strjr .re by meAns of Volterra series coorjinA*- of - cente- of n appencag.a from the."

int-poatorl. noeforr-j poltons, n-2 in the ca-e when h,- -tn~ary
mir~nr anj .ne spacecraft platform are regarded as
annpr.lm.1A nf tno prlmAry. Ti i tne torque 3DO,0t t 'e

I



(as ndn defininir - diigir,~ for K, ). are or'osen :~.t metoa nt alSse

I B nt; ni

N*-x ino "a" o~o the -igenvalue- of A. :n n~r3 tn il~c ioe ng of e :'0 operator
e *. e x0 A'.< N.p: -2Ar .for sqare i ntegrac le
:r-ur klower rona' on .no weignts are also needed wnen

tne ;nputs ire no qo, b,;, are bounded: (Dwver, 1986)). ~ t
The acvantage, of sicri modeling are:

*Tno model dimension :3 eq~ual to the number of test

rLther thn eecn nnalest ige*The presernce of an, addit.ve, even if not act~ve-y
2;2;e L2 ; ;z l oee trajetery responsepu os o iv i-t oa tay it
*,he interpolated signal (response) can he proven to traoxng error orserved in the edirlior l ;IerdtUre anen1

in t ~ec~o;e of model ing, we can record the *T~number Of c..rv-n to be generated! isq only covouto xorc~nb~do a cadd
r~a ota *~ o eoltngthe real system withn in2 a of. w~x 'nere again N - 2.4 for trne

~corntant or nonoonmtant, test inputs to cons-truct the exampl.e of a qtr ;ctxa cornoosed of point masnen
:rte-polator. The test inputs can be chosen to better connected by eiaszt~c apponcageq and in plane motion).
4:o;roximate the expected excitatIOns of the system. 'The possibly nign d1imens-ional recursive filter can
Thus, we can leluce that the r-al system time responses ru.n at a slower sampling rate, consistent with on noard
.r- jsel for model matonirng, rather than responses, CPU capabilitien.
.4yntnhesized from the matnemat~c'al model.

Then pronl-m iitn thins tecniniqie. however, liest in lntenolat;on Exarnce_7
ef-~ct. tnst we nhould nave storage of curves in order

to com~ute : ne o11. This numcer is equal to rnxN x IN, An interpolator was designed for the same two
wnere m is the nuinCer of tent inputs, H in the dimension bodies beam expander model previously descr,.Des: The
Of trhe state to be modeled and 7is the number of interpolator was opt~mized for ;nput vectorR ui -(-
possible initial values Of each component. Thisuu) of the form rconntant, o, o), Co. constant, 8)

dif~cltjdos ot llw he ysemto run in real and (o, o, constant), chosen with a negs tive constant
t;.ne: e.g., for the case of n point masses linked by during the first ha'f of a 10 second nominal minimum
mnassless but elastic connections one has N - 2n I n the time rotation, and positive during the second hair, with
p~adr motion case. the deformation state re-init~alized at mid maneuver (5

seconds) from the feedback-linearized filter described
ON _;NE E57IMATION previously. The constants were selected for toundedne-s

In tis ecton e tr toproit rom he asttwo of the interpolator accorcinR to (Dwyer, 1986) In effect

tecnniques and create d morve effective one by making use L, bonds on reethe ly xe Ted itroao epnei
of the transition matrix ,pline of the bilinear system gie and figuresp vl. 6h inerolto reposei
of our model: ze nfgrs6ad7

DISCUSSION; APPLICATION TO CONTROL

,(t" (t 1K )n(t. t~) Th computed torque which will orient the system in
the required maneuver will be sensitive to model
accuracy. This car be alleviated by variable structure

In fact the transition matrix spline 9 Interpolates the control at the cost of chattering. A technique
transition matrices 0 corresponding to the bilinear developed by Slotine 1I98Ji) suggests that if we know the
system model Ax itea by constant or piecewise cons-tant error between the unknown computed torque and the actual
test inputs " Thin permits the construction or the computed torque, then we can find an optimal
response of the real time sysAtem in piecewise Closed interpolation of the variable structure corrections on
form, thereby repl-icing response curve storage by an each side of the ideal sliding surface that effects
analytic transition matrix generator, rather than the compromises with the accuracy of the, system model used
consqtr'iction of the Coe: 1ici Ient 2 interpolator ci 's from for torque comroutation and the control bandwidth, to
tne Output test inAl y ,y y . ) track )n an optimum way the required trajectory. Th is-

On~e ge-ts C. - cp from y. . (ON1 where *p is error can aictuaily be derived from the on-line modeling
tne (p. q) entry in t~e transition matrix with u(i) ftesaedfrain nfc.a pa on
constants: exists1 between the unknown true structural trdQAltion

, xp((A 18 ()j matrix 9 and the operator spline Interpolator * (Dwyer
jJ j 1980). And because the computed torque is related to

those function!, through the equations of motion, then we
The irte-polated transmition mstrix is then used to can assu~me that an optimal computed torque correction
ipcate bot.een onservatior,s the sitructural stIAte comptible with the rohiutrnels of the model can be
est irat~s ortired from a filter bas-ed on a glonally founi. Thswill, be reporteda elsewhere.
feedck-liro~irr:d trarnsfor-mat~on (Seen in sectlon 3.1)
of tne bilineAr struot-iral model. This last techniqu.e
ha!- tne floivg features:
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APPENDIX 0(;1 ;2, 13).

Notation af Symbols Met in the Text and Graphics:

Position of i-th appendage it undeformed. T - diag HID and L - colfCl. [I]..) where [I]

1 -23 denotes the 3 x 3 identity matrix.
O(b, b, b )- Body fixed reference 

0 - w0

c: True center of mass - dlagw[ - w where w - w 0 -

N(n
, n , n ) Inertial reference system. o dai[lIN 1 WL 00 Mi[]

The vector from bory fixed coordnate to the i L

instantaneous center of mass: K diag{[ [I]) and C - diagiC [IJ.

0 0o o o ji J .; j ) . r T ( ) -j d efi. . J r n e d a s .
0 j (x

if 0 1 the undeformed .y.stem's center of mass, then: Jo hub + r T(P)Mo0 N)

.. J. J y) - rT(p)M r(y) * rT (y)Mo r()

where: R(W, p) - m (x 
W * W

I
j 

. m For planar motion, every third rows and Columns are

m *s omitted. One then has
.10 -1

w
j 

is called the mass ratio o the J-th appendage, w * 6 k, An , 
- 

J - diag IE 0 i1. then the 3n x 3n

and clled the mass rat'o of Lne main body. if is matrix 0 is rep, throughout by the 2n x 2n

the net extprnal force applied to the (center of mass atrix iJ, a2 by ;2J2 . Y (where Y is now the 2n x 2n
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Abstract where rotation about an axis through the undeformed

center of mass, measured by the angle S In radians is
Computed torques for pointlng and tracking require presumed, entailing deformations represented by an nxl

compensation for slew-induced structural, column matrix Z(t) of generalized coordinates. A
forebody/aftbody, or optical train alignment torque T about t he same axis with respect to which the
deformations. hereafter called deformations. Thus even attitude angle S is measured entails matching rotation-

If only line-or-s31gt va-lables are to be commanded, deformation coupling coefficients. Z - A. Deformation
yet full state feecoack is needed. The solution shaping forces or moments are encoded by the mx1
propose here is to decouple by feedforward of the matrix Z of generalized forces. To fix Ideas, the

llne-of-signt slew dynamlcs Into the deformation central hub with symmetrically placed and
control loop. It is also shown In this paper how antisymmetrically deforming cantilevered appendages
arbitrarily few actuators are needed for such developed In [I] can be considered, wherein the
deformatIon shaping, at the cost of higher coefficient matrices as well as deformations are
differentiability of the reference line-of-signt expressed In terms Of assumed mode shapes.
dynamics. The low rates, single axis case is developed

hore in doai s,, it! avV."niad1iI'v tem .. iam .t.. AMA ,. ... 1 ~ ~ ;ete
multiple axes by global feedback llnearizatlon is nonlinearities arising from gyroscopic effects or full
outlined. spatially distributed deformation dynamics or both, are

found In [2], [3]. [4), [5]. but then tlme-varying
introduction dynamics or unboundec operator coefficients arise, for

which the present method is still under development.
In recent work on the control of robots with

elastic joints, the state of the coupled rigid and Slew-!nduced Deformations
elastic dynamics is forced to evolve In a "slow"
Integral manifold, so that the elastic distortion to The standard "proportional plus derivative"
the computed torque becomes a transient, I.e., the control law given by Eqn. (3) requires feedforward of
"transversal" (off-manlfold) dynamics. That approach Measured structural acceleration to the pointing and

is followed here In treating the problem of slewing tracking torque control.
with deformable bodies, to show how a family of
control-dependent slow manifolds can be constructed, on ' .T---------

each of which the slew-induced deformations are - J S * c 9 * k S * n
e expressible in terms or (higner derivatives of) the
slewing angle. This relieves the bandwidth
requirements of the primary slew actuator, but - al( - -3 - ao(e - e (3)
generally requires that slew-generated "deformation

shaping" forces or moments also be applied, such as
through available structural actuators. In the absence where hats denote estimates and 8 is the commanded
of sufficient natural damping, it is shown how a "fast" angular trajectory. With a good model and good sensors

correction can also be appliel, Involving an on-line the closed loop dynamics is then approximated by Eqn.
synthesis of the "transversal" part of the (4),
deformation. This requires higher control bandwidth
than If only the slow control were used, but only from J *• (c * ) a ( a * )e a 0 (4)
the deformatIon shaping actuators, not from the slew 0

actuator. The role of "prior" or "posterior" global where AS - S - S and no structural controls 'per se'
feedback linearization for the extension of the method are applied: f - 0.

to the multlaxial or high rates situation is then
outlined., as well as the interpretation of the slow Besides the (everywhere present) question of model
manifolds as sliding surfaces for robust variable accuracy, the need for hign bandwidth slew torque
structure control Implementation. actuators and for full order structural sensinS arises.

Deformable Rotational Dynamics Exact Slow Manifolds

The model for a rotating body to be used here is Following [6) - [8) In part, It Is shown here how
given by Eqns. (1), (2). deformation-Induced line of sight disturbances can be

T reduced to transients: Eqns. (1), (2) are first put
J a * C S k S - * - e f (1) Into slngtl ar perturbation form: Let K be & normalized

stiffness matrix. so that one has K expresee In terms
.Of Kiand a perturbation paramneter c ) 0:M X - C t * Z  • d e E r () CI -XC.K~ S E -K cX (5)

Research supported in part by SDIO and managed by
AFOSR (AFSC) under contract F4962O87-C-01l03, and by
NASA Grant NA-I-613.



without loss of generlily one may aet M * I * Identity K X * d * - E f (17)

and K * diad ww
1 ,th I,,.t ( w ( ... thn

et ct - w s*, o that K - dial (12 1 
(Whatever the physical Interpretation, one may aeek n Z + -

polynomial controls in the parameter c, - -

- C 1 I p (6) K tj Czj *- 1  * (19)

- - "" (7) forj - 0, ... , p-2, and

such that the deformations can be expressed as n
T  

T (2perturbations from the rigid body limit as c * 0, i.e.. p * • (20)

S -I p-I -p (21)
with the normalized deformation z (which has units of
to. ce) also a polynomial in c, where z - 0 is presumed, so that if one

•et3 1 -9- O-dad f' - 0 for a .P I then

also Z - 0 for JZ p. Thus, the postulated polynomialZ -Z I * rP-1 I- (9) solutVn given by Eqn. (9) Is verified. In particular,m no convergence o~onsideration3 arise and no truncation
Is needed (hence, the term "exact slow manifolds").

and 11(t) - 0 as t - Indee. Insertion of Eqns. (5) This is possible if ad only if Eqns, (16) - (21) cannO (8) Into EQn. (1) and (2) rings the latter to 4es le 'r l , - 0 .. . ,8 s ., ena .

T-ngu r eo vDeformation Suppression

J * ce * * C cnTz _ * e t * (10) The simplest choice of slow manifold

is t - 0, which exists if and only if it is possible to
solve Eqn. (22) below for T and f

Ci -: * + . E_ (11)>0

where the disturbance v is given by Eqn. (12), 0 v

T(12) o()6 0 cW - C ( (22)

and Z' is governed by

where
S . ' - K y- " (13)

Js °C5

If c - 0 then z z 0 lies In the "rigid body 0o(s) 2 2 (23)
manifold" , ds

z . i -1 (E.f V ' k'e) - h 0(e.i.y.) (I4) and

where e
T

E' - £ djn
T  d' J-Jld. c* - dJ C and O 0 E (24)

,t' -I Jd1k. Then by Tychonov's theorem of singular
perturbations 16], for (In general small Obtained by setting z - 0 In Eqns. (16) andenough) C > 0 there 13 also a neigboring "slow (17), and then Capi ae-transorm ng (the amemanifold". symbols *.i.f.z.y will be used both in the time and

cz -, (15) frequency domains).

Noting that dim c - (1on) x (1.m) (where n
dim Z and 0 - dim ). Ft is seen that c is square Ifwhere if Z(te) = h (at to ) then z(t) - h (at t) for and only If a-n ("independent modal aptoe Control").
Then e Is Invertible If and only if E Is Invertible;

* dedthen Eqns. (16), (17) yield

In particular, slow manifolds corresponding to

polynomial controls In o can be found that yield
polynomial representations In c (in which ese C need (J 

T
E'ld)e * e * + v (25)

not be "small"): indeed, the insertion of the -
expansions (6), (7) and (9) Into rqns. (10) and (11),
followed by collection of equal powers of c, yield the E- d * - f (26)
following recursive formulas, - -o

6 *L( Letting be: - S - I , the tracking problem Is thenI * k - to C 0 V reduced to a regulator problem based on the reduced
slew dynamics given by Zqn. (25), that Is. to the
choice of a stabilizing regulator H (s) for the block

C



diagram In Figure 1 - j[Ms • C]K'1s 3l T) (3)

and
F[ I T 0

T 1 0 T

sos 17 ' "i~s. i i 9C ()T 120 a(32)

Equations (30). (31). (32) are obtained by solving Eqn.
(17) for z . to yield

--o

z - ' E'1K - d528 (33)a-a --

in the frequency domain. then Inserting Eqn. (33) Intc

Eqns. (16). (20) and (21) with p-1 (hence z, . 0).

Figure I Noting that dim £ (s) * (2*n) x (2*2m), It is seen

that c (s) is square If and only if in-n/2. In this

The slew torque is then given by Eqn. (27): case, it C(s) Is generically invertible one may set

T - i 2 ., S T' -f( .( )T)T

( - e E d) S' - H (a)&$ (27) C'(s)O,(s) - (Yrs),s)T, Y(3) (34)

For Eqn. (25) to be a valid slew dynamics model, (which is independent of c), and then define the slow
It is also necessary to apply a deformation suppressing transfer functions for T - -to c n [ I * c1 s
control f. which is found from Eqn. (26) by insertion follows:
therein of the closed loop pointing angle 0 found by T I
Inversion of Eqn. (25): Y (a) - 'r() * Y (s) (35)

11 - * 2i e T E -1)s 2 s k - ,  . E- I ds Y () Y - (3) - YV (3) (36)- I -- _ - -u i -

£-~ ds2 { - eT 1 d)s2 - Cs kIH (3)6B (28) Equation (30) then yields

Y(3)8 - T (7
In particular, If a proportional and derivative

regulator Ho(s) - a.s * a3 is selected, the closed loop Y (s)a f (38)
I pointing error dynamics becomes as shown in Eqn. (29):

eT_1 c*awhere the transient disturbance v Is &iven In terms
(J - T -d (c - a,)Ae ° (k - ao) M - v (29) of v of Eqns. (12) and (13):

In contrast with Eqn. (4), the driving - TT C1 (5) 1( 0 0 T]T (39)

term v - - n'y' Is a transient as expected, and yet.
unlike Eqn. (3), no high frequency correction term is No transient appears in Eqn. (38) because, instead
needed In the slew control law of Eqn. (27). The need of directly Inverting all of c,(s), It is possible to
for structural sensors and high bandwidth actuators In solve separately for T In terms of f (and 0) from
the Implementa:ion of the control law given by Eqn. (3) Eqn. (16) and for I In terms of f and f, from Eqn.
is now replacei by the need for full order structural (20), while (ft ft ) are obtainabli onl-y from Eqn.
control. This is alleviated next. (21) with E from Eqn. (17), neither of which

contain v.
First Order Deformation Shaping

The tracking problem Is now reduced to a regulator
If c In Eqn. (22) is not Invertible, the ystem problem based on the reduced slew dynamics given by

cannot be -rigdfie." but the coupling term n X can Eqn. (3 ). that is. to the choice of a stabilizlng
still be replaced by the fast transient plus higher regulator Hi(s) for the block diagram of' Figue 2:
derlvatlve terms In the pointing variable B. The
simplest cnolce of such a slow manifold is z z.
which exists if and only If it Is possible to sove
Eqn. (30) below for and f,

Ca) 1 f T,o C 1 , T)T • (.O.)L (30)

where

7(a) (- Cs 0 k, * nTK- do
-a - FIgure 2



The low bandwld:.h slow torque control 1 than given by to construct the slow transfer functions tor
Eqn. (4O)z

o 1 ' (a)- 0 - H1 (N)AB (40) T - E C I and for f - c

For £Qn. (37) to be a valid slew dynamics model, 0

It 1s Again necessary to apply a deformation shaping
control f, whilc is now found from Eqn. (38) by * v(46)
insert on therein of the closed loop pointing p
angle 0 found by Inversion or Eqn. (37):

f- f * CfI - Y t3)Yt (3 F e _Cs) - .f (W7)

where

Y f H I ( Y( ) - ( ) (48)

The closed loop painting error dynamics now becomes a

shown in Eqn. (2):9)

Jnd(h) - He) as - VF (u2)n -j

I It turns out tha each scalar component Yf(a) and the transient v Is again found from Yof Eqns.
of Y (s) has the the 'ae (12) and (13): P
number of zeros as Y'-s . In particular, the pole

of Y'(3) and or eacn (3) are given by det c (3). vp ( 1 . 0 T..... 1.OT)C p(()-V(".. 00') (50)

Thus, only the compensation H1(3) determines the
number of derivatives of the pointing error As that are Again no transient appears in Eqn. (47) for f,
needed to generate f from Eqn. ( 4), as well as T from only In Eqn. (46) for -. This is because. Ir.3tead of
Eqn. (40). This is an exact generalization of the directly inverting c (s). it is also possible to
"Independent modal space control" case given by Eqns. proceed as follows:
(27) and (28). In particular, the high frequency
disturbance to the slew dynamics is again reduced to a (a) Solve recursively for z In terms of f for
transient (now v ). and no high frequency correction -.. ,p (and 2 ? divatIves of 0 from
needed for the pointing control torque i. Eqns. (17) and (19), which do not contain v;

P - Th Order Deformation Shaping (b) Insert z In terms of f '3 Into Eqn. (21).

which 1? decomposable ;-nto n equations InMore generally, a slow manifold with the (p-1) m unknowns (the m components of f for
representation of Eqn. (9) as a (p-1)-th order j-O. . where here n - (p-1) m sc odlngpolynomial in c exists If and only If Eqn. (3) below to Eqn. (4), again not containing v;
can be solved for Tj, _ . . .... p,

c) Solve recursively for i In terms of t from

= Cp(s)(rf T . Cp.C p Eqn. (16) (through which v appears). then
a .. p for -t*l in terms of fJl and f j ...... to

v. ........ T)T (5) (through z ) from Eqn. (18).

It is from (b) that Eqn. (47) arises.

where (s) and c (3) are found by auccessive Independently of v. and from (c) that Eqn. (46) arises.

eliinV Ion of z In Eqns. (16) - (21). Again the tracking problem is reduced to the
Now i3 p n) nponal and dim c(a) design of A stabilizing regulator Hi(s) replacing M(ia)

in the block diagram of Figure P2, where the high(p-l.n) x ((p.1) x (1-.)). It follows that Cp(a) is frequency transient vp replaces v , with Eqn. (08) now

aquare If and only if the following relation holds true giving the transfer function Y (3)
"  

instead of Eqn.I of n - dim y, m - dim _ and p (35).

n -m The consequent low bandwidth slew torque i Is then
- P i"') given by the counterpart or Eqn. (40). and the saping

c control f by the counterpart of qn. (?).) with Hj(C)

replaced-by H (a) and with Y (a) and '() Found Prom
2p derivatives of 8 then determine the slow Eqns. (48) anE (49).
part cz or '

I Fast Control

For an invertible c p(a) one again aets

It there is insuf.icient or non-existent *a
(a) r(s) T ()() priorl" damping C In the deformation dynamics for

p (-). ( ( ) ... , ), sdeqate time so&', separation, the shaping control can

be augmented by a "fast' term f', as advocated in the

f 77 sinlular perturbation literature. e.g., [6) andi ()T (45) references therein. That Ia. Eqn. [al) tor f (or

Its N0(a) counterpart) can be replaced by Kqna. (51)



and (52) below, with no cmange to Eqn. (NO) for r (or )
to Its Hp (a) counterpart), S.13 (a - (C,-1.0.0) (62)

- L1 (s) T -
_ (0,-e,- 1.- ,- 2 } (63)

A c A ( - C Z) (52) as that

det c I(a) - e e{ (a * )k 1
where y and j now must be obtained from deformation
sensors, but cz. cz fjom Eqn. 1 (9). hence in terms Of )/k
the f ', I.e... Of'(s)'T (a) T for J-O (.p.

Since the."fast" off-manifold term Z' in Eqn. (B)
is modeled by y - cz, it follows that r' Is nothing but Inversion of c1(a) yields the following forms of Eqna.
proportional plus derivative control of the fast (35) and (36).

dynamics. In particular. 1' * C. a3 required in [6]:
Indeed, the fast dynamics OF Eqn. (13) is now replaced
by that of Eqn. (53), P6(6)

My' [ [ A,]j-- - (K. 5) 0 (53) )

hence y' by designer-selected choioe of the pins f (a) - - (66)
A, and Ad.

In the above approach. no change 13 needed In the
3i-. dyr..cs ar-, corresponding oQntrol laws, where the where t.c denoinaa- is tre ;uadratic pol'-omal given
or!glnal-X and C are retained, provided v is replaced by Eqn. (64), while the numerators are 6-th degree
by v - e f' (- ) wherever appearing. An alternative polynomials.
is to design the fast control first, I.e..

omit cz. cz from Eqn. (52). with consequently greater In the idealized case of a perfect slew actuator,
simplicity In the implementation at fl. But then C i.e., c-C and k-0 In Eqn. %1). as well as no structural
must be replaced by C * A1 and K by KIF A 0 In all the damping. i.e., C-C in Eqn. (2). so that c 1 *fC, - 0,
slow control algorithms. the numerator and denominator of Y (3) and ( take

the f~orms below,

Examcle

Let n-2 and i-1, hence p-1, so )A 3 2 /k k  (67)
that z - for appropriate choices of t - r * c and

of, t - - -to f . T Let also a * 1  f fd (
e2 ) . - e, d - (d 1 ,d . n -d M -I, C - diag (ci. p6 (3) - a k2 * b 0 2
c2 ) and K- diag (k 12)' One then finds

( 0 11(3), 12(s), $13(s). 1M(a)
T  

(54q) 62(a) - 2 o/kIk2 (69)

where

where

2 (5Oi 
(  )  

-Js * c 3 * a55 ) a 1 - d k (70)ia - ee 2Uc2  " k1) ed 2kl -~ 2 170

,1 (s) - (d1
2 /k - d2

2 /k 2)s (56) a - e e (d 2 d 2 1  dd(es2 - .,)
a2 -/e 1 e 1  2 1 2 2 1

S13(5) - (57)

1 ( ) - ( c ( d / k 2 )s 3 ( 5 8 )ild5 s c) 2 bo - e2 d1 k2 -e ed 2kI  (7?)

and
b2 1 de2 d 2a1 (73)

c 1C(s) - [£11(W E 1 ( ). 13(
s )

,C1 ()] (59)c 0  1e 2 (k2  k1 ) (7

where
It follows that the transfer function to be

T(a) (1,0,0,0) (60) regulated in the block diagram or Figure 2 becomes the"type 2" System shown In Eqn. (75),

112(,)T -( .(d 1 (e /k I • d2 (e ,2 k 2 ] 
2

3 1 1' ()a 2- s B ( 75)(a • o0 }(e 1/k1)s}.{ • =a)(eaic2),) (61) * 1az,2 • ,o})

I



nIcn van be ,1.btllzec by . -damped PID" controller of control r In Eqn. (2) can be exploited to design an
the form given in Eqn. (76)z "Interpolated awitcning control" following [11]. with

X C 2 _ q) (76) the selected slow manifolds regarded as the switching

1 0 surfaces. The pointing control r can then be designed

for the reduced order dynamics on the switching

co matcsnng surface, by the "hierarcnical" method. TheseIn particular. by matching c e r c e t f t e e t n i n i l e d s u s d e s w e e
clostd loop transfer function with those of (a xesoswl edsusdeswee,

A) .) the filter parameters can be chosen to be q References

I 5 , K - 1O a2 - aoq, P1 - 5A /coK an -c
=

1~K oto
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4
7)'s counterpart can be directly used to

generate the shaping control r from T without

linearization).

Finally, the question of sensitivity to modeling

errors may yield to variable structure control
implementation: the presence only ot the shaping
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101, 'Ol [o I]

-1 from the excitat:on vector u to an output vector y (such
(1 nas j Introduced t ifor) is imbedded in a Hilbert space

:" • P(t. t )R' t; 1 ] 0i h l.) y(t). of (./0) op Sratorq of candidate billnear ,ystems.
1quippeo witn a r-procucing xernel:

For tne cas.. o' nl>w-:inncd structural deformation
eat n&ior find ?, " ano F2 - lower alf of B(X) v d
ce::n: o'efore. :n dar'.cuiar, we find R. -R RI. so X Lu, v) * exp f u'S)R (S)d
tnt. in conttrst to ' extendea Kalman Ite, only t0
tine '-indepenent rci-.n .rm of te iceti equation where the weignt matrix R is determined y bounds on trie
jz:i' Dy Q' nas .o e cated, all other coefficients
tcen; now constants. By ising this procedure a 25% 5tructur'l frequencies. An interpolator o: tne form
Increase in speed, witn 251 increase in accuracy has
been found in preir-ninary simulations. Even so, we V (u) - c Ca(t)K (u, ustll need to process a very high data rate of sensor t i t
measurements, wnicn is not easy to implement. especially
In space structures. Cku31ng time delays in estimation. is constructed, tuned so that the structural responses

to preselected test inputs ul are recorded, and
optimally interpolating at system level the responsesto

other excitations in the signal class. The optimizationA nimolifiod moc.-I of a ne~m expander was is formulat.ed as d minimization of the maximum distant ,
r, pr-nl~ec by a primary nirror mass elastically liniea between the interpolating operator and any candidateto -i sconaary mirror mass. Restor:ng forces and operator that matcnes the experimental input-output
dissipative foroes proport:onal to relative secondary signal pairs. If the system data are not accurate, a
m rrnr motion were moce;eo at the secondary. A weighted minimization that does not require exact
pcewse constant anguiar acceleration was commanded, matcning of system responses can also be used.
represent:ng the accelerat~on-deceleration profile of a This minjmization is carried out in a Hilbert spicv
minimum time retargeting maneuver. Presumed angular of input-output operators equipped with a weighted "Focx
aocelerometer and gyro noise covariances were space" s~alar product which is the Hilbert sum of the
transformed into equivalent process noise for the cau.al L scalar products of the Volterra series of the
feeCtck-linear.zed filter, with the additional operators in question. A different procedure to
simplification of neglecting a squared nVise term calculate the coefficientsa i must then be used. The
corresponding to the second entry u 2 - w Of the general method is discussed in the papers of Dwyer
equivalent input u. Presumed strain gauge sensor nfoie (1986. 1986b) and de Figueiredo and Dwyer ,1980).
were taKen from the literature. The relative The Hilbert space structure for M inputs (here m -
performance of the extended Kalman filter and the 3) is defined as follows: let
feedbacx-linearized filter are seen by inspection of
figures 3. 4 and 5.

OFF LINE MODEL1NGCii.... In c ..... m) and let

In this subsection we u ie the newly developed h t
method of Bilinedr System Optimal Interpolation. This n i In
technique applies to dynamical systems which behave in
"normal" oilinear form. (by active suppression of the cT exp((t - t )Ala
constant bias additive term b: I1

AX B(X)u ...pxp((tn_ - tn )A Bn exp(tnA)Jx(O)

y cTx where B [3 1 ',i •*.]

hcn means also: These are the Volterra kernels for Ui(t I ) ... u Ct n ).
'The (IO) behavior Is highly nonlinear.
The system is high dimensional if arising from Carleman t t t nlinearization. <t' - ** in£I n . . l [ f o "'
'There is no clean ARMA model for system identification. t"t n I n
Then. by using optimal interpolation we get:
'Closed form. circut-implementable bilinear h h n,i I dt n' dtlapproximations. n.i In .1 n

*' I/O) based system identification.
The dimension of the new system is equal to the number which yields the reproducing property

of test signals.
Now rather than tolerate the time delay found In

the previous techniques of estimation, we use instead <V I K (u, .) > = V (u)
tLe motnoc of operator spline intorpolation to find the t
de::ct,.on amount Detooen onservations. The input
o (i/O) operator V. The Volterra series for a bilinoar system will

yield a bounde norm <Vt, Vt> provided the weights r

... .. . , = '".. ..... . .. .. . ' - . . . ' ,,.,- ,
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2v A newly eveloped procedure (Fadali, Gardner and Dwver.
3986) nanea on a change of var:aoles in preliminary

This trans:zrme equation cAn alqo be written in Studies gave us a better time of computation and

ti:inear form, wnzcn al e iaged frequently in the therefore a more reliable set of observed data. Th:a

foi-owing ,Rct..n3. procedure 3 OuLlined next.

XiAXSB(Xu-b Feectack Linearized Procedur:

Where: The idea is to change the state configuration of our
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JX2B(X) '01 CO (] C03

and 2 X Jx Y, hx Vi)an 
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distributed model under the assumption of symmetry bout Yl - hI (Y ) Y2 h h 2 (Y2 ) we get
the mass center also yields product terms between ; and
str-uctural deformat;ons, and can be found in Chapter 9 x x
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A 3 T? JCT

I C.n7uted 4 torques for pointing and :racking require compensation for

slew-induced structural, forebody/aftbcdy, or ootical train alignment de-

formations. Thus even if only line-of-sight variables are to be ccmmanded

yet fuli state feedback is needed, with consequent high bandwidth control

recuirements. The solution investigated here is to decouple the unwanted

deformation state by feedforward of the line-cf-sighnt slew dynamics into

the deformation controlforces or moments, for an apnaratus consisting of

a mirror mounted on an optical bench, that is itself mounted on a rotating

table. Adjustable elastic interfaces are used to model slew-induced de-

formations as angular differences between mirror mounting, optical bench

and rate table. Low bandwidth control with fewer actuators than degrees

of freedom is shown to be possible, by correcting the computed torques so

as to force the interstage angular differences (standing for slew-induced

deformations) to evolve in a "slow int!ral :manifold wherein they are mod-

elec as functions of the m.rror pointing angic. Simultaneous mirror point-

I ing and independent rate table pointing is also shown to be possible, Ohich

renresents the situation of pointing an instrument elastically mounted on

a maneuvering platform. Comnariscni with OID and LIR methods are also made.
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I I. Introduction

Spacecraft flexible modes have often challenged automatic

control system designers. For example, unmodelled antenna

* deformations caused Explorer to eventually tumble out of control.

Often, the solution used for such problems was to make the structure

I sufficiently rigid and/or the control slow enough that the flexible

modes would not be excited by the controls [Ref. 1]. However, this

option may not be available in the future for some spacecraft, given

the current interest in the use of larger, lightweight space structures

with correspondingly lower natural frequencies. The presence of

I flexible modes that are excited by the controls thus poses a problem.

The solutions to this problem may be split into two classes. In

the first class, there are controls available to be dedicated to each of

the flexible modes. In the second, more likely case, some of the

modes do not have a dedicated controller. This paper applies a

* method called deformation shaping to a particular problem of this

latter case. This method was adapted by Dr. T. Dwyer, as an

extension of singular perturbation techniques, such as by Kokotovic

I [Ref. 2], initially used in control of robots with flexible joints by

Spong [Ref. 3]. The method modifies slew induced deformations to

produce, in some sense, better dynamics.

A variety of options are available for the first class of solutions.

If the flexible mode-pointing control interactions are ignored, a

simple PID control of the modes may be attempted, but the results

are often unsatisfactory. A somewhat more sophisticated solution is

the use of a Linear Quadratic Regulator (LQR) design. Another

II
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I possible solution is to rigidify the structure with some application of

the controls. After an initial transient, the structure will then be

effectively rigid and have no flexible mode-pointing control

interactions. This would be ideal, but the type and/or number of

actuators rarely allow this control. This class of solutions will be

I used as a basis of comparison for solutions in the second class, for

which all controllers are not available.

The second class of solutions is less well developed. The

problem of noncolocated sensors and actuators greatly complicates

matters. PID control does not work, and rigidifying control does not

I as well. It is possible to formulate an LQR problem, but there are

some drawbacks to this. Many other solutions are currently

proposed, but none are accepted by everyone yet. A solution for a

problem in which all controllers are not available will be done using

the method of deformation shaping. This will then be compared to

I control solutions for the same problem in which all controllers are

available.

In addition, there are additional considerations particular to

3 this problem. This problem arises from a laboratory model to test

precision pointing control methods. Thus, several constraints and

U additions peculiar to this setup and use are imposed. These include

desired performance, actuator and sensor dynamics, and equipment

limitations.

The problem posed is first formulated and detailed. Next, the

basic theory involved is discussed. The necessary equations are

I derived, and the control form is specified. Then the control is

!2
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I designed. The effects of various control design choices are explored,

as well as the response of the system to various inputs. Parameter

sensitivity and noise effects are briefly discussed, and the control

solution is compared to various other solution types. The results are

summarized, as well as possible topics for future examination.
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I II. The Problem

U 2.1 Problem Formulation

It is desired to make the end of a flexible instrument follow a

commanded trajectory as quickly and accurately as possible. The

I most likely real world counterpart is rapid retargeting slew

command. Another possible mission is tracking, but this presents

some difficulties. Two scenarios are examined. In the first scenario,

only the instrument deformations are shaped or suppressed, and the

vehicle trajectory can be commanded separately from the instrument

trajectory. For the second scenario, the entire vehicle and

instrument system has its deformations shaped by the control.

Controls for the first scenario are derived, applied, and their

* performance analyzed. This is then done for the second scenario.

Both scenarios then have their performance compared to various

* other more common methods.

I 2.2 Laboratory Model

* The laboratory model was configured to represent single axis

dynamics of a multibody spacecraft. The system does not strictly

resemble the dynamics of any spacecraft, but can be used to make a

meaningful comparison between control methods.

The laboratory model consists of three main bodies as shown in

figure 1. The pointing mirror represents the end of a flexible

instrument. The optical bench represents the base of the flexible

instrument. The rate table may be considered the rest of the vehicle,

I4
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I such as propulsion package, or a connection to the rest of the

* spacecraft.

The rate table and the optical bench are isolated from one

another by an air bearing, with springs mounted between them to

provide an elastic link. Physical considerations limit the total angle

I difference between the rate table and the optical bench to about five

degrees. Two Kimco linear actuators mounted between the two

bodies act as a torque actuator. Another actuator, available for

control and/or disturbance injection, is the rate table itself.

The optical bench and pointing mirror are also elastically

I linked through springs, and an Aerotek DC motor connects the two

bodies, providing another actuator.

The model's springs were chosen to give the vehicle "typical"

spacecraft natural frequencies.[Ref. 4J A low frequency mode at .4

Hz simulates very flexible components such as solar panels. Another

I mode at 1.5 Hz represents some other structural flexibility.

The laboratory model thus imposes several constraints which

are not present in the real system, but must be satisfied in the lab.

The most important effects come from the angular difference

constraints and necessary component simplification.I
2.3 The Mathematical Model

The mathematical model is an idealization of the laboratory

model, and thus only approximates the laboratory modc It is

depicted in figure 2. The sensors are assumed to be perfect, and the

I actuators are assumed to follow standard dynamics with certain

5



parameters, as detailed below. Each body is assumed to be rigid,

connected by elastic links. The links are assumed linear, and time

degradation of any component is not considered.

m The actuators have several constraints imposed on them as

shown in figure 3. There are physical limitations in maximum torque

I available,

Figure 1
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I

I bandwidth, and stroke. The problem constraints on maximum torque

and bandwidth are more stringent than the physical limitations, so

the physical limitations have little effect. The stroke, however, is a

major physical constraint, and is the most significant laboratory

model constraint. The motor between the pointing mirror and optical

I bench has a range of forty-five degrees. Since the maneuvers

simulated will be less than or equal to twenty degrees, this

constraint has little effect as long as there is little overshoot. Due to

the linear, instead of rotational, nature of the Kimco actuators

providing T1, there is a maximum permitted angular difference of

I about five degrees between the rate table and optical bench. This

greatly limits the allowable controls.

The control torques are assumed to be produced by standard

PM DC motors, in linear or rotational form. These motors also have

controllers so that they produce constant torque output for a

I constant input signal. Otherwise, the steady state output would be

constant rotational or linear speed, and zero torque. The resulting

transfer functions for the compensated actuators are

TDAc..uaS) 10

TDAMAs) o2 2
s +20ts+1OOt 21]

I TIAMI(s) 29576

T2s) s +219.3s+29576 [2]
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T 2 Ac(s) 7000

s +166.67s+5991.4 [3]

The details of how these were obtained are in Appendix A.

These actuators have only been compensated to produce a constant

output torque given a constant input. This compensation does not

implement any control scheme on the model.

2.4 Equations of Motion

The equations of motion of this system are

12 02 + k 2(e 2 -0 1) = T 2  [4]

I,;, + k 2(01-02) + kl(el-OT) = Tj - T2  [5]

ITeT+k(Orel) =TD- T1  [6]

where

OT= angle of rate table with respect to fixed point

01= angle of optical bench with respect to fixed point

e2 = angle of pointing mirror with respect to fixed point

IT = moment of inertia of rate table about vertical axis= .417 Nmsec 2

11=moment of inertia of optical bench about vertical axis

= 1.627 Nmsec 2

12= moment of inertia of pointing mirror about vertical axis

.863 Nmsec 2

10



I k1 = spring constant for link between rate table and optical

bench= 2.27 Nm/rad

k= spring constant for link between optical bench and

pointing mirror= 49.8 Nm/rad

TD = disturbance torque due vehicle maneuvering torque

I T, = control torque I

T,= control torque 2

These equations can be expressed in matrix form too, but that

is used only for Scenario B (below).

I The system, actuators, and controllers are connected as in the

matrix block diagram shown in figure 4.

Figure 4
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III. Theory

3.1 Introduction to Theory

The equations of motion can be transformed into the singular

perturbation equations of motion. They are called this because some

of the variables represent parasitic perturbations of the pointing

dynamics. There are different possible sets of these singular

perturbation variables. However, there are two best choices.for this

problem, depending on what dynamics or responses are desired and

what controls are available. Two scenarios (i.e. choices of

perturbation variables) are considered. The first one consists of the

case where only the instrument (i.e. between the mirror and optical

bench) deformation is considered a perturbation variable. The

second scenario is the case when both instrument and vehicle

mounting (i.e. between the optical bench and rate table)

deformations are considered perturbation variables. The first

scenario allows the instrument to slew and point in a given manner

while the vehicle may be moving in some other manner. The second

scenario can be interpreted as making the instrument slew and point

when the vehicle orientation does not matter.

3.2 Scenario A Perturbation Equations of Motion

This scenario is simpler algebraically since there is only one

perturbation variable. It is considered first since the derivation is

easier to follow and less cumbersome.

12
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For the first scenario the deformation variable choice used is

z = k2(0 1 - 02) [7]

m with the definitions:
= (82- OT) [81

m S = I/k2  [9]

The singular perturbation equations of motion are then

1282 - =T2  [101

1 I 12 I1 I1 I1 I1 [11]

m I TeT=TD-T j+k 1 +ek 1z [121

The variable z is proportional to the deformation between top and

bottom of the instrument and the variable 0 is the coupling term

I between the instrument dynamics [10J,[ 11 and the vehicle dynamics

* [12].

3.3 The Integral Manifold

The integral manifold approach and its applications are more

I rigorously discussed in [Ref 5,6]. This is a brief overview of useful

ideas.

The integral (or slow) manifold is a certain lower dimensional

m manifold of the system dynamics which relates the system states and

depends upon the controls and the singular perturbation. For some

m appropriate choice of controls, if the manifold is reached then the

I
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I system will remain on the manifold. The appropriate controls can be

found by solving a PDE for the manifold.

The perturbation variable can be thought of as the sum of two

terms; a term on the manifold, and a fast remainder term.
Z = ZIM + Zf [131

The faster the remainder term decays to zero the better, since then

the integral manifold determines the dynamics. In general, the fast

term often decays due to damping in the system. However, for this

problem the damping must be added. This is done by a fast control

that is detailed below.I
3.4 Time Scale Separation

I In this problem two different processes are occurring. First,

I the dynamics are quickly decaying to the integral manifold

dynamics. Meanwhile, the manifold dynamics are "slowly" reaching

the desired dynamics, as explained below. This leads to a separation

of variables based on their time scale. In the fast time scale, the

"slow" variables are changing so slowly that they are approximately

constant and have little noticeable effect if the "fast" dynamics are

fast enough. At most, the fast dynamics will see a constant

disturbance. Looking at the slow time scale, if the "fast" variables

decay fast enough, the most effect they have on the "slow" variables

is a short, transient disturbance input. When considering the

variables in the two time scales to be essentially independent,

equation [13] can be used to rewrite [101, [11], and [12] as

14



'1 '2 11 [14]

12 0 - ZIM T21.. (+zf) [15]

Iel (r:.kl+l + _-_)ZjM + kjo = T119m, -iL+ _L)T2,j,,

I1 12 I1 11 12 [16]

k1  Tk T ekekl

T I TT IT IT [17]

where A = a small disturbance input, TD = TDslow, T2 = Tzsjo,, andI
T1 = Tislow + Tifast [18]I

since T1 is assumed to be the only control with high enough

bandwidth to have a fast control term. The zf terms in [15] and [17]

are transient disturbance terms which affect the slow dynamics and

their impact must be minimized by the slow control. In addition,

[14] gives the dynamics of the fast variable. This equation is used to

design the fast control TIfast to drive zf to zero as quickly as possible.

3.5 Fast Control

It is desirable to use feedback to generate a TIfast to drive zf to

zero. There is a choice, however, of whether to feed back only the

fast part of z (zf) or all of z. Since a high pass filter would probably

be needed to measure only zf, all of z will be used as feedback.

Therefore, fast and slow terms will arise from this feedback. Only

15



U the fast terms will affect the fast dynamics, as discussed above. The

slow terms will affect the slow or manifold dynamics. This control is

called the fast control even though it affects the slow dynamics,

because it is the only control that is used for control of the fast

dynamics. The sensor dynamics of this feedback are neglected.

There are many possible choices for the control form but a

proportional-derivative (PD) feedback controller will be used

because it is the simplest that can do what is required. The control is

* of the form

T1 = T1 - e(a 1i + a0z) [19]

so that
Tlf~a = -E(alif + a0zf) [20]

T I slow = TrI - e(aliM + a0zM) [21]

where T, tilda is used for slow control. Then using [20] the

compensated fast dynamics are

E[zf + -( 1-+i-))]A

II E I1 12 [221

where A is a small disturbance input

The gains a, and ao may now be chosen for the desired fast

dynamics.. For example, the fast controller is chosen to make the zf

dynamics behave as a system with damping ratio z= .7071 and

damped natural frequency a as below, where uf = Ale.

2
zf + 2azf + 2a zf = u f [23]

16



This occurs when the gains are chosen as

a, =2a1 [24]

=o- '2a2I -kI +1 k
I2 [25]

Since e is small, uf is possibly a significant disturbance input.

Thus, for nonzero A there may be a significant steady state error in zf

I for some situations using the PD control. This error did not destroy

the performance or stability of the control, but its effect, if any, is not

analyzed in this paper.

3.6 Singular Perturbation Expansion

The equations describing the slow dynamics, including the slow

feedback component of the fast control but neglecting the fast

transient disturbances are

1202 - zIM = T 2  [26]

.ilM + -I alilM + (.kl+2 +[] a

_L ~ e ZIM 1, =IiL ( L + L )T 2I1 1 12 11 ) M 11 11 11 12 [27]

The vehicle dynamics are

17



k ea_(a 0 +k1) TD T,

IT 11 IT I

[28]

To solve [26] and [27], ZIM must be found.

One method of solving for ZIM involves expanding ZIM, TI, and

T 2 in power series of E.
2

ZIM =Zo +Z+e Z2 + [29]

I- ~ 2-

T1 =T 10 +eT 1 +e T 12 +. [30]

2
T 2 = T 2 0 +eT 2 1 +e T 22 +... [311

Substituting these into (26) and [27], and equating terms of equal

power in C results in:

0 -
Fore: 1 20 2 - z0 =T 20  [32]

(.L+ .L)z0 +~A~ l - +L) T 2 0
I 12 Ii 11 I 12 [331

Fore: z1 =T 21  [34]

jo + !-j-o + !,+ k )Zo + _L+ _z I=T -+l)2
1 i I1 1211 I 1 12 [35]
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For e z 2 = T 2 2  [36]

I1 I 1 1 2 [37]

etc.

For the vehicle dynamics, no singular perturbation expansions are

I used, since the effect of vehicle motion is regarded only as an

exogenous input to the instrument slow dynamics. These equations

can be used to determine the desired instrument slow controls, then

the vehicle controls.

A Rigidifying or Deformation Suppression control can be found

I for the instrument if T2 is not equal to zero. This rigidifying control

must drive the instrument deformation (ZIM) in a short time to zero

and keep it so. This means that the manifold desired is ZIM=ZO + e z, +

... =0. After decay of the fast dynamics, this manifold will be

reached and the instrument will act as if it were rigid.

An obvious solution to this is zo=zl= . . . =0, which forces setting

Tli=T 2i=0 for i=1,2,3,... ;indeed, for this solution, [32] thru [35]

I become:I
For eo: I2e2 = T20 [38]I

+ 20 10 +-

I [39]
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Fore i: 0 = T2 1  [40]

* 0 ji-+-fr2 77 411

etc.

From these equations, one can design controllers using any means for

desired performance, robustness, etc.. This is done in Appendix C.

However, deformation suppression can be done only when there are

as many co-rols as modes: all three (TD, T1, T2) controls must be

m used.

For a Deformation Shaping control, it is not desired to drive the

I deformations to zero, but rather to shape and use them. ForuN example, if T2 is not available to directly affect the instrument

deformations, the deformations (z) can be shaped to be expressible in

terms of the pointing dynamics E)2 and achieve the desired response.

Since deformations are needed to exist after the fast dynamics have

I decayed, ZIM is not equal to zero. However, by examining the

equations [32-37], one notices that with zi=0 and Tl,(i+l)=0 (for i>=I),

a solution can be found for zo, T10 , T11 . The equations are then

12e 2 =z 0  [42]

_ I2* I 11 [43]
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IL1 [44]

3.7 Slow Control Design

Using [24],[25],[30,[42.1431], and [44] we can write (in the

frequency domain)

I T1(s) G, (s)e 2(s)+k 1 (s) [45]

I
where

GI(s)= k2 t_2_(S2
111s 2 (s2+ 2as + 2a2) [46]I

To exactly model and control the dynamics, up to fourth

U derivatives (jerk rate) of e 2 would be needed. Since these are

unlikely to be available as feedback, a form can be found only

requiring higher derivatives of a commanded trajectory. This is done

by using the model

TI(s) = GI (s)e 2(s) + k 10(s) + HI(s)se 2 (s)-O 2(s) [47]I
where Hi(s) is a controller designed below to make 8 2 follow its

commanded trajectory. This model uses commanded feed foward of

Gr"'(s)92*(s) and the decoupling term kl .

I
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I In a fashion similar to that for T1 (s), TD(S) can be expressed as

T(S) =I r62 - (i3.2als 3+(ao+kl )s - Gil(s) )(s)

I (als+ao+kl) s2Gi(s) -1H 1(s)(e(s)-e 2 (s))

I
+ HD (S)(&;r (5-eT (S)) [48]

where HD(s) is a controller designed below to make 8T follow its

I commanded trajectory. One major difference between the dynamic

models is that the model [47] was free to be chosen, but once this

model was picked and the control designed using [47], the model [48]

for TD was completely specified except for HD(S).

The slow controllers may be designed various ways. The use of

3 classical SISO (single input single output) design can now be done

with our new system if care is taken. This will be done for

illustrative purposes, but undoubtedly a better control design could

* be found.

It is desired to have the slow control drive the actual trajectory

I to the commanded trajectory. The slow control is designed to drive

this error to zero. This is not to be confused with the fast control

driving the off-manifold dynamics to zero. The deformation

dynamics (not error dynamics) resulting from the design of the slow

control are the slow manifold.

* The model [47] results in the transfer function form given in

figure 5.

I



Fig

0 +2 - e:
Hi(s) q (s)

Now a simple regulator design is done to find H1(s). It was found

that the simplest form able to stabilize the system was

2

H 1(s) 1112 K(s +m ls+m 0)

k 2(s+b) [49]

Once this form was chosen, the parameters were then selected. The

final design chosen consisted of b=m 1=a, m0=a 2/4. This corresponds

to a controller with two zeros at -0"/2 and a pole at -a. K was chosen

from the root locus (see figure 6) for good closed loop pole locations.

I The choices used for K are detailed in Table 2. These situations in

Table 2 will be explained in greater detail below. In addition, the

effect of K on the time scale separation will also be discussed below.

The design of HD(S) was done in a similar manner. The same

block diagram as figure 5 is used, except the plant was

I GD(S)=IT(S)/S 2 and the controller HD(S) was found to be:

I HD(S) = 2ITCD(S + [50]

I
I 23



I 00

C

I0

Il e)L

I 24



i
i

Table 2I
Choices used for K

Situation Choice for K

Low BW 50

High BW 1429

Low BW, larger separation 29

High BW, larger separation 715

The parameter CD was found to give acceptable performance when it

equaled about .28 a, and good performance when it equaled about a.

Undoubtedly, a better controller could be found, but this one

sufficed.

After the control design is done, the resulting controls are:

T, a(e 2 i -,) + ao(O 2-9)+ 112 d '- ('; + 2ae* + 2a2g,)
k2 dt 2

+ 2 - 2 + (m I-b)(2-9 2) + yj)+ k,[
k2  [ 1]

+k2
i a

2-Ld(a 16 2 + (k I+ ao) e2)- _ 62 ( - 2+ c0 (2-e2)+ yJ
k2dt k 2

-KIZ (al(e-E)2) + Y2 + Y'3)
k2 [52]
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I I where Y1, Y2, and Y3 are found from

U y= -by, + cl(E2- 82) [531

Y2= -by 2 +C2(e-e_2) [54]

and co, c1 , c2, C3, and C4 are detailed in Appendix B.

3.8 Scenario B Derivation

The derivation for the scenario in which the deformations of

the entire system are shaped is very similar to the derivation for the

I previous scenario. In this case, however, there are two perturbation

variables defined(A perturbation vector).

(zl)kl(I-eT)

Z2 k 2(92-o 1) [56]

The resulting singular perturbation equations of motion are

12; 2 + z2 =T2  [57]
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I £Ti1 + =k IT I -i.-1-k(I+ T)T -iT2 -TD [8

I C812i2 L2 - Z, +( + 1= IT, +(I+ 1 h

Iwhere 5=k1 /k2 and e=1/k 1 with kl<k 2. Using the fast control

LIl (02-01) J 1 (62-61) i [601

results in the fast dynamics having four poles at -w. If ao 1, a02, a, 

and a,- are chosen as follows:

4

a01 = W '1'2IT -1

k kkz(I+1 2+IT) [611

al 4wI1112IT

Ik 2(1 1+I2+'T) [62]

a2 k 2W 2

1 k2 k 2(11+12+1IT) (63)

aI2 4w3 '1 1 2('1 1 T)- 2w!1a2=k 2(11+12+ 1 T) [64]
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The resulting slow dynamics are again used to solve for the slow

manifold through singular perturbation expansions. The expansions

* used are

2
z +E7o ,1 +Z Z2 +... [65]

I 2
T, =T 10 +eTT1 +e T12 +... [66]

I
2

T 2 = T 20 +T 2 1 +e T 2 2 +"" [67]

2
TD = TDO + eTDl + e TD2 +. • • [681

Substituting these into the slow dynamics equations and equating

equal powers in e results in the equations

12; 2e+[0 l 0 =T 2 0  [69]

I
K(I1+IT)(l +aOl) (I1+IT)aO2-IT 7.

1 .2(1+aOI) I1+i2(1-aO2) I

(i,+IT +I I '\.f20 ofDO

U [o 1].zl =T21  [71]

I
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I IT 0 [(1I+IT)a Il (I1+IT) 5a121.

10 512  [+ -I 2al 1  - 23a12  7.0

I+_ (I I +IT)(1 +a0 j) (1 1+12.)a02 - IT

I1 -12(l+ao 1 ) 11+12(1-a0 2)
q I I+ I T  I + -I 1 - [l D

* -12fr i 1+i 2 0 [72]

m If TD, T 1, and T2 were all available, a rigidifying control could

be found using a process identical that was used for the previous

scenario. However, only the deformation shaping case for T2=0 will

i be examined for this scenario. With T2=0 a solution can be found is

before with z i=TD,(i+l)=Ti,(i+1)=0 for i>=l. The resulting equations can

be written as

m _ [o 11.o =I,62 .[73]

(I 1+IT)(1+aOl) (I 1+I)a02-IT 70

-12(0+ao1) 11+I2(1-a 02) 0

2 {0 ([74]

m [IT 0 } [(I+IT)a 11 (I1 +IT)Sa 12

0 S1 2 7 - I 2a 1 1  -I 28a 12

9fI,+Tf - [AJrD
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3.9 Scenario B Slow Control Design

Proceeding as in Scenario A, [74] is used to substitute in for zo

into [73] and [75]. Choosing T10=0 (otherwise free) , [75] can be

solved to find T11, TDO, and TDI. The resulting slow dynamics are:I
GD(s)E2 (s) =TD [76]

G i(s)e2 (s) =Tr1  [77]

For the fast control gains used in [61] - [64], the expressions for GC>(s)

and GI(s) are:I
= 1

GD (i +I2+IT)(_._s2+ljs[

w 2  [78]

m G1 (s) -

1112 ( S - 20w) S3 [79]

Again, a control is sought of the form:

TD(s) = GD I (s)E2 + HD(S) (e2 - e 2) [80]

m Unlike Scenario A, the use of this control law completely determines

the other control law as:

T1(s) = G1 (s)e 2 + G-11(s)GD(S)HD(S) (e: - 82) [1

1 :30
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The slow control design used in Scenario B differs from

Scenario A. Instead of using a root locus, the closed loop poles of the

I o.-e 2 " error dynamics were placed. The slow control design chosen

placed all five poles on the real axis at A. The form of HD(S) was

chosen as the same form as in (49]. To achieve this, the controller

parameter values were b= 5), mo= X/40, and

I m1 = = 6-+ -L

64 10 [82]I
The parameter 1/X represents the time constant of the error

I dynamics. However, in order to place the poles in this manner X was

found to be related to w by
w

I [83]

I Thus, the time scale separation was fixed at approximately 7.75 and

could not be adjusted as in Scenario A without redesigning the slow

control. Consequently, the time scale separation was explicitly stated

but for a given fast dynamics speed w, the slow (error) dynamics

were much slower (at least twice as slow as Scenario A slow

I dynamics). This caused the time response for Scenario B to be much

worse than the other methods. With a better slow control design this

method would perform about as well as Scenario A deformation

I
I
I 3
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shaping. A lesson learned from this is that the slow control design

greatly influences the deformation shaping performance.

The controls resulting from the design can be rewritten as

+ 11111 14x (.m*b (9 - 3( +Y)k2 drt2

k2 " (2e[84]E)2
TD= (I1+12+IT d (2 + E)_ + 4X(92- E

d t 2  k l o 3  - 9
4X(11+12±IT) (Co (' 2 - +2 [85(85

where Y4, YS, and Y6 are found from solvi-,,

S4 = -by 4 + c 6 (E 2 - 02) [86]

y5= -lOx y5 + C7 ( 82 - + C (E2 - )[87]

y6= -bY6 + c1 (92 - e) [88]

and C1 , c2, C5 , c6, c7 and c8 are functions of various system parameters

as detailed in Appendix B. These controls result in a non-minimum

phase controller with one zero at +.233X.
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IV. Simulation

4.1 Simulation Details

The simulation was done on a CDC mainframe computer system.

A simulation package called Eclectic Simulation Package (ESP),

developed at The Aerospace Corporation, was used. Various ESP

commands were converted by the ESP precompiler into Fortran V

source code, and then executed. The dynamics were all simulated in

state space form with integration performed by a Runge-Kutta

Fourth Order fixed step algorithm. The fixed time step used was .001

seconds. The output was produced on an IBM 3820 printer. An

example listing of the Fortran V program is listed in Appendix C.

4.2 Results for Scenario A Deformation Shaping

The single deformation shaping case is examined with two

types of commanded trajectories 02*. These are

02' = A(1 - e-t/A) [89]

02* = Bsin(wt) [90]

The commanded trajectories 8T ° are usually equal to 02', and A=.087,

B=.043, r=.5, w=2x unless otherwise specified. The variable t is time

in seconds, A and B are amplitudes in radians, 'r is a time constant in

seconds, and w is frequency in rad/sec.

Both the slow and fast control bandwidth can be varied by the

choice for a, the damped natural frequency of the fast dynamics. The
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slow control bandwidth can be adjusted through a parameter K, a

I. gain in the slow controller. This K also affects the time scale

* separation.

The system response and performance varied greatly

depending on what bandwidth was chosen. The "low" bandwidth

case was for a = x, with K values of 4 and 7. The "high" bandwidth

I case was with c = 37r, with K =100 or K = 200. The K = 4 and K = 100

runs represent time scale separations of about a factor of three; i.e.

the fast dynamics are three times as fast as the error dynamics. The

K = 7 and K = 200 cases represent the fast dynamics being about

twice as fast as the error dynamics.

For an exponential command trajectory as defined above for 02*

and 8 T', comparisons can be made between different controller

n bandwidths and different time scale separations for the runs

summarized in Table 2. It is evident that the required control effort

(peak torque) increases dramatically for a controller bandwidth

increase. However, when the time scales are more widely separated,

the maximum torque increase is not quite as dramatic. Comparing

I these torque outputs with the constraints from figure 3, one notices

* that the high BW controllers require too much torque for the lab (the

high BW three times separation case might be possible, but it is

pushing the limit of actuator capabilities).
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I
Table 2I

Maximum Actual Output Torque

U for Exponential Commanded TrajectoryI
2X time scaling 3X time scaling3 Torque

Low BW High BW Low BW High BW

TD 2.1 Nm 24 Nm 1.4 Nm 9 Nm

T 5.2 Nm 115 Nm 2.1 Nm 11.5 Nm

3 Notes

1. Low bandwidth controller uses a=x

2. High bandwidth controller uses a= 37r

3. For 2X time scale separation, K=4 (low BW), K=100 (high BW)

4. For 3X time scale separation, K=7 (low BW), K=100 (high BW)

5. All initial conditions equal to zero

I
Similar runs were made for the sinusoidal commanded

I trajectory and the control torques are summarized in Table 3. As

3 before, the required control effort was dramatically larger for the

higher BW controllers, and required too much torque given the limits

3l of the lab equipment.
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U Table 3

Actual Output Torque (Nm)

I For Sinusoidal Commanded Trajectory

U 2X time scaling 3X time scaling

Control
C Low BW High BW Low BW High BW

T D(max) 3.5 Nm 40 Nm 3.25 Nm 16 Nm

TD(after 3 Nm 3 Nm 3 Nm 3 Nm
transient)

T (max) 5 Nm 190 Nm 4 Nm 45 Nm

T (after
1transient) 2.5 Nm 2.5 Nm 2.5 Nm 2.5 NmI

Notes

U 1. a=% for low BW control

2. a= 3x for high BW control

3. For 2X time scale separation K=4 (low BW), K=100 (high BW)

I 4. For 3X time scale separation K=7 (low BW), K=200 (high BW)

5. All initial conditions equal to zero

I
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U The higher BW controllers cost a lot more control effort, but

they gave a faster response, as expected. The approximate 2%

settling times for the exponential and sinusoidal commanded

* trajectories were

Table

Deformation Shaping

Time Response
2% Settling

Case time (sec)

I low BW, 2X sep. 2

high BW, 2X sep. 0.5

low BW, 3X sep. 4

I high BW, 3X sep. 1.5

I
One reason the response times are longer for the larger

separation cases is that the fast dynamics are the same for both time

separations, so a larger separation means slower error dynamics.

The time response benefits of a higher BW control are evident, but

I then so are the control effort costs.

The deformation shapes are shown in figures 7 and 8 for the

1 exponential and sinusoidal commanded trajectories, respectively.

Both are for a=3.6it,K=7, cD=-,t, and zero initial conditions. Notice that

I the deformations never die out for the sinusoidal case, but instead

make E2 follow the commanded trajectory.
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The effect of nonzero initial conditions upon the control was

examined. In general, the initial conditions could help or hinder the

controller to a significant degree. An example is the case with

,a=3.67r, K=7, cD=nt, an exponential commanded trajectory, and initial

condition 61(0)=.021. Some of the response characteristics are

contained in Table 5.

Table 5

Initial Condition Effect on Response

Response without Response with
Category initial conditions initial conditions

T (max) 5.2 Nm 1.5 Nm
I

T D(max) 2.1 Nm 1.5 Nm

2% settling time 2 seconds 1.5 seconds

Largest 10 1- I .035 radians .115 radians
I T

Max error ( 0 " ) .023 radians .011 radians
2 2
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This initial condition actually helped the response (for the most part)

in this case. However, the 101-OTI stroke constraint was violated

when the initial condition was added. The initial condition caused an

increase in the maximum 1l1-OTI about four times larger than the

case with no initial condition. The solution was to speed up the

bottom controller (TD) to CD=31c, reducing the maximum 101-eTI to

I .024 radians while raising the required TD to only 2 Nm. However, it

* was made evident that an initial condition could have an

unexpectedly larger effect upon the performance.

Parameter sensitivity was given only a cursory examination.

The effect on the response was observed when the estimated value

I for 12 differed from the actual value for I2. As expected, the

response was not as good. The results are summarized in Table 6 for

the case of K=4, a=3.6t, zero initial conditions, and sinusoidal

commanded trajectory for 02" and OT°.

The error between the commanded and actual trajectories

I increased a greater percentage than the error in the parameter

estimation, so the controls are relatively sensitive to parameter

variations(at least for 12). The parameter 12 affects the slow control

mainly as a gain. Thus, as long as there is sufficient gain margin in

the slow control design the control is stable. However, the feed

Iforward terms using 12 cause a persistent error for the sinusoidal

trajectory. (The correct steady state value is achieved for the

exponential trajectory due to the integral part of the control).

Various other parameters may have greater or lesser effects.

For example, if the estimate for k, varies from the actual value, the

I
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decoupling control terms do not completely decouple the systems,

and correction might be required. The parameter sensitivities need

to be explored in much greater depth.

Table 6

Effect of Parameter Estimation

Error upon Performance

Category I2act = I2est I2act = 1 .2 12est 2act = .*8 2est

T (max) 3 Nm 3 Nm 2.3 Nm
I

T (ma-) 3.25 Nm 3.8 Nm 3 NmD

Error "after" transient 0 .012 (28%) .014 (33%)

Next, the effect of sensor noise was studied. Gaussian white

noise excitations were added with standard deviations of 1% and 5%

of the input signal. The case used was the exponential commanded

trajectory for 02 ° and T , a=3.6t, K=4, and initial condition 0 1(0)=.021.

The error 62 -e2 * is shown for the two noise levels of 1% and 5%

respectively in figures 9 and 10. It is evident that the response is

fairly good, the maximum torque magnitudes are still about the

same, and the 1ox-eTI response was not pronounceably increased. The

performance for the depicted runs is summarized in Table 7.
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Table 7

Effect of Noise upon Performance

Quantity No Noise With Noise With Noise
(a -= 1%) (a = 5%)

T (max) 2.1 Nm 1.5 Nm 1.8 Nm

T (max) 1.4 Nm 1.5 Nm 1.5 Nm

Error "after" transient 0 .25 % .6 %

2% "Settling" Time 1.5 sec 1 sec 1 sec

101 0 TI max .11 rad .115 rad .12 rad

Note: The variable a in the table is the standard deviation of the noise

4.3 Results for Scenario B Deformation Shaping

3n  The deformation shaping Scenario B performance was worse

than Scenario A in most respects. Again, this was due to the slow

I control design, and not any intrinsic flaws of the method. The

performance is summarized in Table 8.
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Table 8

Scenario B Deformation Shaping

I Performance Summary

I Category Low BW High BW

I T 'max) 11 Nm 5 Nm

m ("after" 7 Nm 3 Nm
transient)

I T (max) 35 Nm 50 Nm

(atr n 1.5 Nm 1.5 Nmtransient)

1 2% settling time 15 sec 6 sec

I
These results were with a sinusoidal commanded trajectory. The low

bandwidth control used w=3.1n, and the high bandwidth control used

w=7.75x.

For Scenario B, increasing the dynamics "speed" did not

increase the torque cost nearly as much as in Scenario A. The control

for TD actually decreased for the higher BW case. However, this was

because the control T1 for the lower BW case could not keep up with

I the commanded trajectory as well as the higher BW case, and needed

more help from TD.

I
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V. Comparison of Deformation Shaping with Other MethodsI
5.1 Introduction to Comparisons

I Various other methods of control design were used to obtain

solutions for the problem. Most of these solutions, however, used all

three controllers while the deformation shaping solutions used only

two controllers.

Since the slow control design for Scenario B adversely affected

I the performance, all comparisons will be made with the deformation

shaping solution of Scenario A.

5.2 Deformation Shaping vs. Rigidifying Control

The rigidifying control is detailed in Appendix D. It was

I examined with the same fast control speed constraints as the

deformation shaping control. The rigidifying control low BW case

had w=3.6nt, X=nt and the high BW case had w=10.81c, X=3x. The

rigidifying control time scale separation was chosen as three for both

cases. This is compared to the deformation shaping case with a time

I scale separation of three.

The maximum torques required are presented in Table 9 for

the case with no initial conditions and exponential commanded

* trajectories.
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Table 9

Deformation Shaping vs. Rigidifying

Performance Comparison

Deformation Shaping Deformation Suppression

Category
Low BW High BW Low BW High BW

TD (max) 1.4 Nm 9 Nm 1.3 Nm 3.3 Nm

T (max) 2.1 Nm 11.5 Nm 18 Nm 6.5 Nm

T2 (max) 0 Nm 0 Nm .5 Nm 1.5 Nm

2% settling 4 sec 1.5 sec 2.5 sec .5 sec
time

The required torques for the low BW are very similar, and the

settling time isn't even twice as large. The higher BW controllers

show more difference in required torques and settling times.

However, considering that the deformation shaping is using only two

controls while the rigidifying is using all three, the deformation

shaping is doing an adequate job of retaining the performance of the

rigidifying control. The responses for sinusoidal commanded

trajectories also display this trend.
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5.3 Deformation Shaping vs. PID Control

A design for PID control was made so that the error dynamics

would be no faster than the deformation shaping fast dynamics. The

PID control using all three actuators, whose design is detailed in

Appendix E, is compared to the deformation shaping control. If the

top actuator failed or was unavailable, a stable PID control using the

bottom two actuators could not be found. A comparison of the

controls for the exponential and sinusoidal commanded trajectories is

I made in Table 10.

The PID control outperformed the deformation shaping for the

exponential commanded trajectory in terms of response time, but it

did not do as well for the sinusoidal commanded trajectory. Even

though the deformation shaping used only two controls, instead of

I three, it was able to beat the PID control in this case

I
I
I
I
,I
I
I
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I
Tabe -1

Deformation Shaping vs. PID

Performance Comparison

I Exponential Sinusoidal

Category Trajectory Trajectory

Deformation PID Deformation PM
Shaping Shaping

T (max) 0 3 Nm 0 4.6 Nm

T (max) 5 Nm 40 Nm 3.25 Nm 16 NmII
TD(max) 3 Nm 3 Nm 3 Nm 3 Nm

2% Settling 2 sec .4 sec 2 sec
Time

*

E2" e2 .0025
error "after" 0 _0 0
transient

I
I
I
I
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5.4 Deformation Shaping vs. LQR Control

Deformation shaping is compared with a "modern" control in

the form of an LQR design. The LQR control was designed to have

I approximately the same maximum required torque magnitudes as

the deformation shaping, so the responses could be compared. The

LQR design is detailed in Appendix F.

The LQR control performance was comparabl to the

deformation shaping control performance.

I Table I I

Deformation Shaping vs. LQR

Performance Comparison

Category Deformation LQR
Shaping LQR

T (max) 5.2 Nm 9 Nm

TD (max) 2.1 Nm 3.5 Nm

2% settling time 2 seconds 1.6 seconds

Table 11 compares the LQR design with the deformation shaping case

with a=3.6n and K=7 for the exponential commanded trajectory. The

LQR design was selected to have comparable control torques, and the

required settling time was then found comparable. However,

deformation shaping has an advantage, although it didn't apply in
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this problem. An LQR design requires full state feedback (feedback

of all dynamic state variables) for every control torque, whereas

deformation shaping does not require this in general. Only the

torques with a fast control component, such as T 1, may require full

state feedback (but do not have to). The other torques almost always

do not.

5.5 Summary of Comparisons of Results

After comparing the various methods, several observations can

be made. In general, it seems that deformation shaping, using only

two controls in this problem, can achieve performance about equal to

that by PID or LQR methods using all three controls. The price paid

for this capability is the need for feed forward of higher derivatives

of the commanded trajectory. A summary of the advantages and

disadvantages of the various control solutions is presented in figure

11.
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I

VI. Future Work

Many unanswered questions remain to be investigated. One

unknown is the effect of disturbances to the fast dynamics discussed

I in 3.5. Also, alternative methods of introducing the fast control are

3 possible, such as introducing the fast control after the slow control

has been found. Another question is whether deformation shaping

can be used for tracking targets, since it requires higher derivatives

of the desired trajectory. A technique of real time interpolation of

I bearings only data to generate higher rates used in robotics is found

in [Ref. 7] , and might be useful. The sensitivities to parameter

variations need to be explored. Finally, various schemes, such as

treating the slow manifold as a sliding surface for Variable Structure

Control, might be added and tested for an increase in the robustness

U of the control, albeit at the cost of higher required bandwidth.

I
I
I
I
I
I
I
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I
VII. ConclusionsI

The deformation shaping method was able to solve the problem

I using only two controllers instead of all three. It was able to achieve

exactly the correct trajectory for the ideal case. The need for a good

slow control design was revealed by the Scenario B results. Initial

conditions affected only the transient response levels, while the

response time remained the same. Parameter estimation error was

I found to have a significant impact on the response accuracy, and

should be investigated further. Sensor noise, on the other hand, had

little effect on the accuracy.

The various comparisons with the other methods confirmed

that deformation shaping with only two controllers could perform

I almost as well as the other methods using all three actuators. The

price for this capability was the need for higher derivatives of theI
commanded trajectory, and higher complexity.

The various advantages of deformation shaping make it a

method deserving further study.
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r% 1 j~1Q1&%1A r%

Actuator Dynamics

The actuators for T, and T, are standard permanent magnet DC

I motors and can be found to have the following transfer function (Ref.
i 8].

KTRJs

RJtms + Js + K-KB [A.1]I
The parameters are summarized in table A.1

i TTable A.1

* Actuator Parameter Values

I Quantity Definition Value for Value for
T1  T2

R Coil Resistance 8.76 Ll 2.3 C2

KT Force Constant 3 lb f/A .39 lb ft/A

U Electrical Time Constant 4.56 ms 6 msm

I J Inertia or Mass 141 g .03 lb in sec 2

KB Back EMF Constant 3.7 V/ft/sec .53 V/rad/sec

I
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I
I

The actuator dynamics for TD are not as simple. The dynamics

I are the result of a complex internal hardware controller. From

experimental data, an approximate transfer function was found for it.

20xs

s + 20ts + 1I00t [A.2]

Compensation was performed on the motors for tw reasons.
First, it was desired to have a steady state input command cause a
steady state torque output instead of a steady state velocity output.
Secondly, certain BW values were needed for the actuators in order
for the model to be reasonable.

Through the use of the following integral feedback scheme,

mT
A Dynamics

I

with K11=11, K12=6, A1=12 and A2=7 the compensated actuator
dynamics were achieved. It was also assumed that it was possible to
compensate the TD actuator to its given form [I]. The resulting
actuator BW levels were 1.5 Hz for TD, 30 Hz for T1 , and 8.5 Hz for T2.

5
I
I
I
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Appendix B

Evaluation of Constants ci

The constants co to cg arise when the controls are rewritten

from a transfer function form to a state space form. In general, they

are the result of synthetic division and/or partial fraction expansions

of the various terms. The constants used in scenario a will be

evaluated first, then those from scenario B.

The constants co and cl come directly from synthetic

division of [47].

co= m1 - b [B.1]

c1= mo - b(m 1 - b) [B.21

These terms show up in many of the following expressions.

The terms c2, C3, and C4 arise from the partial fraction

expansions of the various terms. Intermediate temporary

expressions t1 , t2 , and t3 are used to make the expressions less

cumbersome.

t2 - ai(2a2 + 2ab) - -2aja 2 - b(t1 - a,(2a + b)))
C 2=  2 a - -b

S b [B3.31

c 3= tl - al(2o + b) - c2 - Icl [B41
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St3- 2alba 2 - 2tia 2

b r.5]

where

t, = alm, + a0kl [B.6]

t2 = almo + mj(ao + ki) [B.7]

t3 = mo(ao + kj) [B.8]

The new constants introduced in Scenario B were c5, c6, c7, and

c8 . The values for co and cl were as above. The constant for c5 was

merely a convenient definition.

c5 = -20f O X [B.9]

The others again come from partial fraction expansion and are

defined using intermediate expressions for simplicity.

C6 = (bt 4 - N5 + t6 ) [B.10]

C7 = t4 - C6  [B.11]

cs = -bt 4 + t5 + bC6  [B.12]
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where

t4 = C0C5 + C1 - lox2 [B. 131

t5 = MOc5 - lox 2(m I + CS) [B. 14]

t= - IlObX 2(CO+ c5) [B. 151
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U Appendix C

* Program Listing

leePROGRAM MAIN(TAPE11I, TAPE1Z2. INPUT-TAPE12 , OUTPUT)
lie EXTERNAL OERIVS.ESPRK4 *INRKPCI 129 CALL ESPII(DERIVS.ESPRK4 *INRKPC
136 END
146 SUBROUTINE CONTROL(TS4.TS3 TS2 TSI JTS Y TCl .TC2.JO
I56 REAL TS4 ,TS3 TSZ 1T5i JTS ,TCI *TCZ ,TO SIG PLAN .AI *A6,K .Ki,K2
160 REAL Ml MOB,IlI2.ITCD
170 REAL Y(100)
tee LOGICAL FLAG
19N COMMON/THETATS/TTS.TTSI .TTSZ

266 COMMON/PARAM/SIG.LAM.AI *AO,K.Kl *KZ,Ml .M0.B.Il I.ZIT.COAAA.BB8,CCC
210 COMMON/FLAGS/FLA6I220 C
230 Y20 - Y(20)
240 Y8 - Y(8)I256 TC2 - 6.6
266 TFAST - AI*Y(6) + AO#Y(S) - AI*Y(4) - AO*Y(3)
276 TCI-TFAST.(I1.12/K2)*(TS4 +t 2.0#S16.TS3 + 2.@#*~SIG6TS2)
286 1 +(I1*I2oK/K2)*(TSl - Y(6.) + (MI-B)*(TS - Y(S)) +YS)

290 2 +K I (Y(5) - Y( 1))
366 TD - (IT*TTS2 + 2.09ITaCD'(TTSl-Y(2)) + IT#CD#CD*(TTS-Y(1 I)
310 1 ( (K.12/K2).(Al.(TS-YCE))+Y20+Y(18))+(12/K2)*(AJ.TS3+(KI+AG)9I320 2 TS2)+(-Il1.124K/K)((TSI-Y(6))+(MI-B)*(TS-Y(S))+Y8)
336 3 - ( 11.#12/X2 )*(TS4+2. *SIG*TS3+2. #S I6SIG*TSZ)
340 RETURNI3S6 END
366 SUBROUTINE ICCOIP (T,Y)
376 DIMENSION Y(100)*PAR(100)
386 COMMON/ SWTCHS /SWTCH (50) ,SWMEM( 564 ) 1MAXSWS MPAXMIEM INEVENT
396 COMMON/PARS/PAR
406 REAL SIG,LAM.A1 *AO,K Kl *K2 M1 *M . 1112 ,IT
416 COMMON/PARAM/S16.LAM.A ,AO ,1K K .K2,Ml ,M0,8,11 .12,IT,C0,AAA,BBB.CCCI 426 COMMON/STPCON/HP .FIXSTP ,HMIN ,HMAX
430 C
440 FIXSTP - 0.001I456 LAM *3.1415927

466 CDO 3.141SS27
470 Il 1.6273486 12 *0.863

496 IT 0 .417
566 1(1-2.27
516 K2 - 49.8I526 SIG - 6.S*(7.2361)*LAM
536 A8 - 2.0vS16@S16IIl - KI - (I1+12)eK2/12
546 Al - 2.0.SIGOII

556 K - 4.#355.92/49.84K2/(11#I2)
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568 NI-SiG
570 Me - S16eS16/4.
Sao a SIG
596 Cl aAi.NI+AO+KI

see8 C2 *1MO+MI.(AOeK1)

6I0 C3 -MO*(AO+KI)
620 AAA ( C2 - Alo(2.#SIG#SIG+2.'SIG#S) - (C3/8-Z.*A1.#SIGI)I 636 1 -8*(CI-AI.(2.#S16+8)) M/ 2.*S16-Z.#SIG.SIGiS-8)
646 See - Cl - Alt(2.#SIG+S) - AAA
658 CCC - (C3-2.6Al@SIG.SIG*8-2.6SIG4SIS*AAA)/6
668 Y(3) - 0.021
676 RETURN
68e ENO
696 SUBROUTINE DERIIJS(T,Y,DY,STOP)I 700 DIMSENSION Y(100). OY( 100), PAR( 100)
710 COMMON/SWTCHS/SWTCH(SO) 8SWMIEI(50,4 ) ,MAXSWS .MAXM~EM.NEVENT
720 COMIION/PARS/PARI 730 REAL SIG.LAII.A1,AOK,Xl,X2,I.MO,B,11.12.IT
740 REAL KII*K1Z,K21,K22,KII,XI2,AKAA,KK*KA
7S6 REAL CO TTS2,TTSI TTS
766 LOGICAL FLAG
770 COMMON/PARAM/SIGLA,Al ,AO,KK.Xli I 0.S.I 1 .12 IT.CD.AAA.888 CCC
780 COMPION/TOOUT/TS,TSI .TS2 STS3,TS4,TCI ,TC2 ,TO
790 COMMON/THETATS/TTS*TTS1 ,TTS2I 8Be@ COMMON/STPCON/HP ,H ,FIXSTP .HMIN .HIAX
ale COMIIDN/FLA6S/FLA6
828 DATA KK.KI I K21 AK,KI 1/219.3,219.3.27137.0,29.127.6.47/
836 DATA KAIXI? .K22,AA,KI2/166.67,166.67.59914 .7.9.6.8/
840 DATA FLA6/.FALSE./
856 DATA P1/3.14IS927/
86 DATA CONST,TAU.TAUO/0.087..S-,.S/
870 C
880 TTS - CONST.(1. - EXP(-T/TAUD))
890 TTSI a (CONST/TAUD)*EXP(-T/TAUO)I960 TTSZ - -(CONST/(TAUO.TAUD)).EXP(-T/TAUO)
919 TS -CONST'(t.9 - EXP(-T/TAU))
920 TS1 a (CONST/TAU)#EXP(-T/TAU)
930 TSZ - -(CONST/(TAU.TAU))*EXP(-T/TAU)
946 TS3 - (CONST/(TAUo*3.9fl.EXP(-T/TAU)

958 TS4 - -(CONST/CTAU*.4.0))*EXP(-T/TAU)
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960 C TS - TS1 - TSZ - 0
976 C TS3 - TS4 - 0.0
see C
990 C

is@@ CALL CONTROL(TS4,TS3,TSZ.TS1 ,TS,Y,TCI *TC2.TO)
Isis
1020 ERROR - TS - Y(S)

1040 DY(l) - Y(2)
lose DY(Z) - ( I .0/IT)* (TO - TOI - K I Y(1I) KI #Y(,3)
1060 DY(3) m Y(4)
1070 OY(4) a (I.0/11 )#(TCl - TC2 - K2* (Y( 3 -YSn K I (Y(3 )-Y( I)
1ose DY(S) - Y(S)

109e DY(G) - (1.O/I2)o(TC2 - KZ'(Y(S) - Y(3)))
1100 DY(7 w -B*Y(7) + KOTS2 + K#MI#TSI + K#MO*TS
file DY(S) a -e&Y(S) + (MO - B#Ml + 8*8 )*(ERROR)
1120 C #to## ACTUATOR INTEGRATORS "4

1130 DY(9) - Y(10)
1140 OYCIO) - -Kl1.Y(IO) - (K21 + KII*KK)*Y(9) + AK.KX#KII#TCI
Ilis DY(1I) - Y(12)
1160 DY(iZ) - -K12#Y(12) - (22 + KIZ*KA)*Y(11) + AA#KA#KIZ.TCZI1170 OY(13) - Y(14)
1180 DY(14) - -20.O*PI*Y(14) - (l0.0'PI)**2.O#Y(l3) e(10.0.PIU..2.OfTD
1190 MI(S) - Y(16)
1200 DYUiS) - -. SGY ).SI'IY()8B TS1 + CCCaTS
1210. OY(17) a (-B)*Y(17) + AAA#TS
1220 MI(S) - Y(19)
1230 DY( 9)&-2. *SIG#Y( 19)-Z.'SIG'SIG.Y( 18 )+8B.(TSl-Y6G) )+CCC,( ERROR)
1240 DY(20) - -BoY(20) + (AAA - I1.010 - B*Mt + B'8))*ERROR
1250 DY(21) - (-B)oY(21)+(MO-8#(Ml-B))#TS
1260 DY(22) (-)Y2)(-6('1))(S
1270 DY(lS)-OY(lG)uOY(l7)-O.
1280 DY(21 )-OY(Z2)-O.
1290 C
1300 RETURN
1310 END
1320 SUBROUTINE SWINPT(VALUES,T.Y)
1330 DIMENSION VALUES(SO), Moo0), PAR( 100)
1340 COMMON/ SWTCHS/ SWTCH( SO) ,SWMEM(SO,.4) .MAXSWS.,MAXMEM SNEVENT
1 3SO COMMON/PARS/PAR
1360 RETURN
1370 END
1380 SUBROUTINE SWMEMN(VALUES, T, Y)
1390 DIMENSION VALUES(50). MOO0), PAR( 100)
1400 COMMON/ SWTCHS /SWTCH( SO). SWMEM( SO ,4 ,MAX SWS ,MAXMEM NEVENT
1410 COMMON/PARS/PAR
1420 RETURN
1430 END
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1440 SUBROUTINE OUT pUT(T.YDY,PLOT,PRINT.STOP)I1450 DIMENSION Y( 100), PAR(C100). PLOT( 1ee), PRINTC6B). OY( 160)
146a COMMON/ SWTCHS /SWTCH( SO) ,SWM EM(56.4) 1MAX SUS MIAXMEM ,NEVENT
1 470 COMMON/PARS/PARI 1480 REAL TS.TS1 ,TSZ,TS3,TS4.TC1 *TCZ.TD
1496 COMr ON/TOOUT/TS.rSl .TS2,TS3,TS4,TC1 *TCZTO
1S6@ COMMON/THETATS/TTS ,TTS1 *TTSZ
I5la DATA IAN/lIU~ ~~I2 CALAACETY
1539 IF(IAN .EQ. 1)THEN

issaCALAAYET )
1566 ENDIF
1570 C
1586 PRINT( 1 )-PLOT(1 )-1
1596 PRINT( 2)-PLOT(2)-TS-Y(5)

1606 PRINT( 3)-PLO(3-TSI
16le PRINT( 4)-PLOT(4)-TC1
1626 PRINT( S)-PLOT(S)-TC2
1636 PRINT( 6)-PLOT(S)-TO
1646 PRINT( 7)-PLOT(7)-Y(1)

1656 PRINT( 8)-PLCT(8)-Y(3)
1666 PRINT( 9)-PLOT(9)-Y(S)
1676 PRINT( 16)-PLOT( I0)-Y(9)U 1686 PRINT( I) -PLOT( 11)-Y( 11)
1696 PRINT( lZ)-PLOT( 12)-Y( 13)
1706 PRINT(13)-PLOT(13)-Y(7)
1710 PRINT( 14)-PLOT( 14)-Y(8)
1720 PRINT(15)-PLOT(IS)-Y(lS)
1738 PRINT( 16)-PLOT( 6)-Y(Z6)
1746 PRINT( 17)-PLOT( 17)-TSI 17S6 PRINT( 183-PLOT(1IS)=TTS
1760 PRINT( 19)-PLOT( 19)-YCS)-Y(3)
1770 PRINT(20)-PLOT(20)-Y(3)-Y(I)I1780 RETURN
1790 END
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Appendix D

Rigidifying Control Design

The rigidifying or deformation suppression case is just a special

case of deformation shaping. It makes the flexible structure behave

as a rigid body after the fast dynamics die out. The slow manifold in

this case is called the rigid body manifold. Recall the equations

resulting from the singular perturbation expansions [38] to [41].

Using these equations, slow controls can be designed similar to what

was previously done for the deformation shaping case. The resulting

torques are:
"0 2 •T2 = I2 e 2 +2X(0 2 -02) +X. (0 2- 02)} [all1

a4 a 2 •

T1 =(I +12) (0 2 +2X(e 2 - 02) +X (0 2 - 02)) +k 1(0 2 - 0 T) [D.2]

- 2 (11 +12)
T , T 1 + [[w I - (k , ) ( 2 "  0 1) + 2 w 1 (0 2 - 0 ).12 [C.3]

* * 2 0

TD= IT{O T + 2 9(0 T - OT) +. (e T - 0 T)) +
"S 00 2 0

(I1 +I)[0 2 +2%(9 2 - 02) + X (0 2 - e[) [D.4]

where 1/A is the time constant of the 02•-02 error dynamics, I/g. is

the time constant of the 0T*-OT error dynamics, and 1/w is the time

constant of the critically damped fast dynamics. Unlike the

deformation shaping control, the time scale separation between X and

w can be chosen.
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Appendix E

PID Control Design

The PID controller for T2 was designed to make the angle error

from the desired trajectory go to zero. The bottom two controllers

were designed to make the angle between the two adjacent bodies go

to zero. The controllers for these actuators were designed to treat

the bodies above them as a single rigid body. Thus, the T1 controller

treated the pointing mirror and optical bench as one body with

inertia 11+12. The TD controller was designed treating the body as

entirely rigid with inertia IT+I1+I2.

The resulting parameter gains were:I
Kr=KI1=KI2=500 [E.1]

Kpr=KpI=Kp2= 100 [E.2]

KDD=KDI =KD2=5 [E.3]

I Of course, a better design is possible, but this one worked well for

* the given problem.

A similar design using only T1 and TD worked adequately for

3 the exponential trajectory, but could not be stabilized for the

sinusoidal trajectory. The best that could be achieved with the PID

Icontrol would be marginally stable.
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Appendix F

LQR Control Design

The LQR design was done with the following costs.

I
Cost for use of T2 = 1000

Cost for use of T1 = 1

Cost for use of TD = .01

Cost for error in e2 = 10

I Cost for error in e1 = 1
i Cost for error in 9 T = 5

These gave reasonable torque levels for the resulting controls, which

were of the form:

IT2 = KZDD( 8T -E.)+K ) ))+K1~ l
I

T,= KIDD(eT - E~)+ K1D~eT - 8;) + K11D(e I- 1

IK + 1 (e 1 - ej) + K 12 je *2 - (2  - E .2

ITD =KDDjeT - &) +KD~eT- e) +KDlI 1 l 1

+ +KDI(el e1) +KDJ e 2 - e2) +KD~e2 -e2) ME.31

I The values used for 9~j and its derivative were identical to those of

92* and its derivative. The values for 8T* were given as in Scenario
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A. The resulting feedback gains were:I
For T2: K2DD = 6.5E-05 K2D = 3.9E-03

K2ID = 3.8E-03 K 21 = .14

3 K22D = .03 K22 = .096

For TI: K1DD -1.92 KlD = -4.19

KI1D = 31.7 K11 = 325

KI2D =35.8 K12 = -44.3

For TD: KDDD 8.43 KDD = 89.7

KD1D 25.4 KDI = 183

KD2D = 14.85 KD2 = -43.5

I
I
I
I
I
I
I
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